精英家教网 > 高中数学 > 题目详情

【题目】分别是椭圆的左、右焦点.若是该椭圆上的一个动点的最大值为1.

(1)求椭圆的方程

(2)设直线与椭圆交于两点关于轴的对称点为(不重合)则直线轴是否交于一个定点若是请写出定点坐标并证明你的结论若不是请说明理由.

【答案】(1) ;(2)见解析.

【解析】分析:(1)由题意可得,设,根据的最大值可得,从而得到椭圆的方程.(2)将直线方程代入椭圆方程消去x后得到关于的二次方程,设,则,则可得经过点的直线方和为,令,结合根与系数的关系可得,从而可得直线轴交于定点

详解:(1)由题意得

,则

∴当,即点为椭圆长轴端点时,有最大值1,

,解得

故所求的椭圆方程为

(2)由得消去x整理得

显然

,则

.

∴经过点的直线方和为

,则

即当

∴直线轴交于定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在某次人才招聘会上,假定某毕业生赢得甲公司面试机会的概率为,赢得乙、丙两公司面试机会的概率均为,且三家公司是否让其面试是相互独立的,则该毕业生只赢得甲、乙两家公司面试机会的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为D,若函数满足条件:存在,使上的值域为,则称为“倍缩函数”,若函数为“倍缩函数”,则实数的取值范围是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知甲、乙、丙、丁、戊、己6.(以下问题用数字作答)

1)邀请这6人去参加一项活动,必须有人去,去几人自行决定,共有多少种不同的安排方法?

2)将这6人作为辅导员全部安排到3项不同的活动中,求每项活动至少安排1名辅导员的方法总数是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的三个顶点,其外接圆为.对于线段上的任意一点

若在以为圆心的圆上都存在不同的两点,使得点是线段的中点,则的半径的取值范围__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中.

(1)若函数处取得极值,求实数的值;

(2)(1)的结论下,若关于的不等式时恒成立的值

(3)令若关于的方程内至少有两个解,求出实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,且当时,.

1)求的值;

2)求函数上的解析式;

3)若关于的方程有四个不同的实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂家拟在2020年举行促销活动,经调查测算,某产品的年销售量(即该厂的年产量)万件与年促销费用万元,满足为常数),如果不搞促销活动,则该产品的年销售量只能是1万件,已知2020年生产该产品的固定投入为8万元,每生产1万件,该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).

1)将2020年该产品的利润(万元)表示为年促销费用(万元)的函数;

2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的零点个数;

(2)已知,证明:当时,.

查看答案和解析>>

同步练习册答案