精英家教网 > 高中数学 > 题目详情
6.设函数f(x)=$\left\{\begin{array}{l}{log_3}x,0<x≤9\\ f(x-4),x>9\end{array}$则$f(13)+2f(\frac{1}{3})$的值为(  )
A.1B.0C.-2D.2

分析 由已知先求出f(13)=f(9)=log39=2,f($\frac{1}{3}$)=log3$\frac{1}{3}$=-1,由此能求出$f(13)+2f(\frac{1}{3})$.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{log_3}x,0<x≤9\\ f(x-4),x>9\end{array}$,
∴f(13)=f(9)=log39=2,
f($\frac{1}{3}$)=log3$\frac{1}{3}$=-1,
$f(13)+2f(\frac{1}{3})$=2+2(-1)=0.
故选:B.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b,则b为(  )
A.-1B.0C.1D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆$C:\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的离心率为$\frac{3}{5}$,过左焦点F且垂直于长轴的弦长为$\frac{32}{5}$.
(1)求椭圆C的标准方程;
(2)点P(m,0)为椭圆C的长轴上的一个动点,过点P且斜率为$\frac{4}{5}$的直线l交椭圆C于A、B两点,证明:|PA|2+|PB|2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知正项数列{an}的前n项和为Sn,当n≥2时,(an-Sn-12=SnSn-1,且a1=1,设bn=log2$\frac{{a}_{n+1}}{6}$,则bn等于(  )
A.2n-3B.2n-4C.n-3D.n-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,已知点E为平行四边形ABCD的边AB上一点,$\overrightarrow{AE}$=2$\overrightarrow{EB}$,Fn(n∈N*)为边DC上的一列点,连接AFn交BD于Gn,点Gn(n∈N*)满足$\overrightarrow{{G_n}D}$=$\frac{1}{3}$an+1$\overrightarrow{{G_n}A}$-(3an+2)$\overrightarrow{{G_n}E}$,其中数列{an}是首项为1的正项数列,则a4的值为(  )
A.45B.51C.53D.61

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知数列{an}中,a1=1,a2=3,an+2+an=an+1,则a2014=(  )
A.-3B.-1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=x3-3x2+1是减函数的区间为(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如果$a+\frac{1}{a}=2$,那么${a^2}+\frac{1}{a^2}$的值是(  )
A.2B.4C.0D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.甲、乙两名同学在五次考试中的数学成绩统计用茎叶图表示如图所示,则甲、乙两名同学成绩稳定的是乙.

查看答案和解析>>

同步练习册答案