A. | 1 | B. | 0 | C. | -2 | D. | 2 |
分析 由已知先求出f(13)=f(9)=log39=2,f($\frac{1}{3}$)=log3$\frac{1}{3}$=-1,由此能求出$f(13)+2f(\frac{1}{3})$.
解答 解:∵函数f(x)=$\left\{\begin{array}{l}{log_3}x,0<x≤9\\ f(x-4),x>9\end{array}$,
∴f(13)=f(9)=log39=2,
f($\frac{1}{3}$)=log3$\frac{1}{3}$=-1,
$f(13)+2f(\frac{1}{3})$=2+2(-1)=0.
故选:B.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2n-3 | B. | 2n-4 | C. | n-3 | D. | n-4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 45 | B. | 51 | C. | 53 | D. | 61 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com