【题目】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=2,AB//DC,AB=2CD,∠BCD=90°.
(1)求证:AD⊥PB;
(2)求点C到平面PAB的距离.
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD是边长为2的菱形,,平面ABCD,,且.
(1)求直线AD和平面AEF所成角的大小;
(2)求二面角E-AF-D的平面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,且椭圆过点.
(1)求椭圆的标准方程;
(2)设直线与交于,两点,点在上,是坐标原点,若,判断四边形的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某地区年龄在25~55岁的人员中,随机抽出100人,了解他们对今年两会的热点问题的看法,绘制出频率分布直方图如图所示,则下列说法正确的是( )
A. 抽出的100人中,年龄在40~45岁的人数大约为20
B. 抽出的100人中,年龄在35~45岁的人数大约为30
C. 抽出的100人中,年龄在40~50岁的人数大约为40
D. 抽出的100人中,年龄在35~50岁的人数大约为50
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某鲜花店每天制作、两种鲜花共束,每束鲜花的成本为元,售价元,如果当天卖不完,剩下的鲜花作废品处理.该鲜花店发现这两种鲜花每天都有剩余,为此整理了过往100天这两种鲜花的日销量(单位:束),得到如下统计数据:
种鲜花日销量 | 48 | 49 | 50 | 51 |
天数 | 25 | 35 | 20 | 20 |
两种鲜花日销量 | 48 | 49 | 50 | 51 |
天数 | 40 | 35 | 15 | 10 |
以这100天记录的各销量的频率作为各销量的概率,假设这两种鲜花的日销量相互独立.
(1)记该店这两种鲜花每日的总销量为束,求的分布列.
(2)鲜花店为了减少浪费,提升利润,决定调查每天制作鲜花的量束.以销售这两种鲜花的日总利润的期望值为决策依据,在每天所制鲜花能全部卖完与之中选其一,应选哪个?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
极坐标系的极点为直角坐标系的原点,极轴为轴的正半轴,两种坐标系中的长度单位相同,已知曲线的极坐标方程为.
(1)求的直角坐标方程;
(2)直线(为参数)与曲线交于两点,与轴交于,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com