【题目】设抛物线Γ的方程为y2=4x,点P的坐标为(1,1).
(1)过点P,斜率为﹣1的直线l交抛物线Γ于U,V两点,求线段UV的长;
(2)设Q是抛物线Γ上的动点,R是线段PQ上的一点,满足2,求动点R的轨迹方程;
(3)设AB,CD是抛物线Γ的两条经过点P的动弦,满足AB⊥CD.点M,N分别是弦AB与CD的中点,是否存在一个定点T,使得M,N,T三点总是共线?若存在,求出点T的坐标;若不存在,说明理由.
【答案】(1)4 (2)(3y﹣1)2=8(3x﹣1) (3)存在,T(3,0)
【解析】
(1)根据条件可知直线l方程为x+y﹣2=0,联立直线与抛物线,根据弦长公式可得结果;
(2)设R(x0,y0),Q(x,y),根据2可得x,y,将其代入抛物线方程即可得到结果;
(3)设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),设AB的方程为y=k(x﹣1)+1,联立,根据韦达定理和中点公式可得点的坐标,同理可得的坐标,由斜率公式得的斜率,由点斜式可得的方程,根据方程可得结果.
(1)根据条件可知直线l方程为y=﹣(x﹣1)+1,即x+y﹣2=0,
联立,整理得x2﹣8x+4=0,
则xU+xV=8,xUxV=4,
所以线段UV|xU﹣xV|4;
(2)设R(x0,y0),Q(x,y),则(x0﹣1,y0﹣1),(x﹣x0,y﹣y0),>
根据2,则有2(x﹣x0)=x0﹣1,2(y﹣y0)=y0﹣1,所以x,y,
因为点Q在抛物线Γ上,所以()2=4,整理得(3y0﹣1)2=8(3x0﹣1),
即点R的运动轨迹方程为(3y﹣1)2=8(3x﹣1);
(3)设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),
根据题意直线AB,CD的斜率存在且不为0,不妨设AB的方程为y=k(x﹣1)+1,
联立,整理得k2x2﹣2(k2﹣k+2)x+(1﹣k)2=0,
则x1+x2,所以可得M(,),
同理可得N(1+k+2k2,﹣k),
则kMN
所以直线MN的方程为y[x﹣(1+k+2k2)]﹣k(x﹣3),即直线MN过点(3,0),故存在一个定点T(3,0),使得M,N,T三点总是共线.
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,若椭圆上的点与两个焦点构成的三角形中,面积最大为1.
(1)求椭圆的标准方程;
(2)设直线与椭圆的交于两点,为坐标原点,且,证明:直线与圆相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某射手每次射击击中目标的概率是,且各次射击的结果互不影响.
(Ⅰ)假设这名射手射击次,求有次连续击中目标,另外次未击中目标的概率;
(Ⅱ)假设这名射手射击次,记随机变量为射手击中目标的次数,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线(为参数),.以原点为极点,轴的非负半轴为极轴建立极坐标系.
(I)写出曲线与圆的极坐标方程;
(II)在极坐标系中,已知射线分别与曲线及圆相交于,当时,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E的方程为y2=1,其左焦点和右焦点分别为F1,F2,P是椭圆E上位于第一象限的一点
(1)若三角形PF1F2的面积为,求点P的坐标;
(2)设A(1,0),记线段PA的长度为d,求d的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中正确的是( )
A.先把高二年级的2000名学生编号:1到2000,再从编号为1到50的学生中随机抽取1名学生,其编号为,然后抽取编号为,,,…的学生,这种抽样方法是分层抽样法
B.线性回归直线不一定过样本中心
C.若一个回归直线方程为,则变量每增加一个单位时,平均增加3个单位
D.若一组数据2,4,,8的平均数是5,则该组数据的方差也是5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年的天猫“双11”交易金额又创新高,达到2684亿元,物流爆增.某机构为了了解网购者对收到快递的满意度进行调查,对某市5000名网购者发出满意度调查评分表,收集并随机抽取了200名网购者的调查评分(评分在70~100分之间),其频率分布直方图如图,评分在95分及以上确定为“非常满意”.
(1)求的值;
(2)以样本的频率作概率,试估计本次调查的网购者中“非常满意”的人数;
(3)按分层抽样的方法,从评分在90分及以上的网购者中抽取6人,再从这6人中随机地选取2人,求至少选到一个“非常满意”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:
空调类 | 冰箱类 | 小家电类 | 其它类 | |
营业收入占比 | ||||
净利润占比 |
则下列判断中不正确的是( )
A. 该公司2018年度冰箱类电器营销亏损
B. 该公司2018年度小家电类电器营业收入和净利润相同
C. 该公司2018年度净利润主要由空调类电器销售提供
D. 剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年2月25日,第届罗马尼亚数学大师赛(简称)于罗马尼亚首都布加勒斯特闭幕,最终成绩揭晓,以色列选手排名第一,而中国队无一人获得金牌,最好成绩是获得银牌的第名,总成绩排名第.而在分量极重的国际数学奥林匹克()比赛中,过去拿冠军拿到手软的中国队,也已经有连续年没有拿到冠军了.人们不禁要问“中国奥数究竟怎么了?”,一时间关于各级教育主管部门是否应该下达“禁奥令”成为社会热点.某重点高中培优班共人,现就这人“禁奥令”的态度进行问卷调查,得到如下的列联表:
不应下“禁奥令” | 应下“禁奥令” | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 | 50 |
若采用分层抽样的方法从人中抽出人进行重点调查,知道其中认为不应下“禁奥令”的同学共有人.
(1)请将上面的列联表补充完整,并判断是否有的把握认为对下“禁奥令”的态度与性别有关?请说明你的理由;
(2)现从这人中抽出名男生、名女生,记此人中认为不应下“禁奥令”的人数为,求的分布列和数学期望.
参考公式与数据:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com