精英家教网 > 高中数学 > 题目详情
4.已知F是抛物线y2=8x的焦点,A,B是该抛物线上两个不同的点,|AF|+|BF|=12,则线段AB中点M的横坐标为(  )
A.16B.8C.6D.4

分析 根据抛物线的方程求出准线方程,利用抛物线的定义抛物线上的点到焦点的距离等于到准线的距离,列出方程求出A,B的中点横坐标,求出线段AB的中点到y轴的距离.

解答 解:F是抛物线y2=8x的焦点F(2,0)准线方程x=-2,
设A(x1,y1)   B(x2,y2
∴|AF|+|BF|=x1+2+x2+2=12,
解得x1+x2=8
∴线段AB的中点横坐标为:4.
故选:D

点评 本题考查抛物线的基本性质,利用抛物线的定义将到焦点的距离转化为到准线的距离是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知等比数列{an}是递增数列,且${a_1}{a_{13}}+2{a_7}^2=4π$,则tan(a2a12)=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|x>1},B={x|(x+1)(x-2)<0},则A∪B=(  )
A.{x|x>-1}B.{x|-1<x≤1}C.{x|-1<x<2}D.{x|1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-1,m),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则m的值为(  )
A.-2B.2C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,a=3,c=2,cosB=$\frac{1}{3}$,则b=3;sinC=$\frac{{4\sqrt{2}}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.执行如图所示的程序框图,设当箭头a指向①处时,输出的S的值为m,当箭头a指向②处时,输出的S的值为n,则m+n=14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知数列{an}的前n项和为Sn,Sn=n2+1,则a5=(  )
A.7B.9C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{alnx+b}{e^x}$(a,b为常数,无理数e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线方程是y=$\frac{1}{e}$.
(1)求a,b的值;
(2)证明不等式1-x-xlnx<$\frac{e^x}{x+1}(1+{e^{-2}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若关于x的方程x2-mx+2=0在(1,3)有解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案