精英家教网 > 高中数学 > 题目详情
4.三棱锥P-ABC中,∠APB=∠BPC=∠CPA=90°,M在△ABC内,∠MPA=∠MPB=60°,则∠MPC=45°.

分析 过M做平面PBC的垂线,交平面PBC于Q,连接PQ,由公式:cos∠MPB=cos∠MPQ×cos∠QPB,得到cos∠QPB=$\frac{\sqrt{6}}{3}$,从而可得cos∠QPC=$\frac{\sqrt{3}}{3}$,再用公式:cos∠MPC=cos∠MPQ×cos∠QPC,即可求∠MPC.

解答 解:如图,过M做平面PBC的垂线,交平面PBC于Q,连接PQ.
∵∠APB=∠APC=90°,∴AP⊥平面PBC,
∵MQ⊥平面PBC,∴AP∥MQ,
∵∠MPA=60°,∴∠MPQ=90°-60°=30°.
由公式:cos∠MPB=cos∠MPQ×cos∠QPB,得到cos∠QPB=$\frac{\sqrt{6}}{3}$.
∵∠QPC是∠QPB的余角,∴cos∠QPC=$\frac{\sqrt{3}}{3}$.
再用公式:cos∠MPC=cos∠MPQ×cos∠QPC,得到cos∠MPC=$\frac{\sqrt{2}}{2}$.
∴∠MPC=45°.
故答案为:45°.

点评 本题考查空间角,考查学生分析解决问题的能力,利用好公式是关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)当平面PBC与平面PDC垂直时,求PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图所示,一种医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下球状液体,其中球状液体的半径$r=\root{3}{10}$毫米,滴管内液体忽略不计.如果瓶内的药液恰好156分钟滴完,则每分钟应滴下75滴.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2-x.给出如下结论:
①对任意m∈Z,有f(2m)=0;②函数f(x)的值域为[0,+∞);③存在n∈Z,使得f(2n+1)=9;④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2k,2k+1)”;其中所有正确结论的序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知三棱柱ABC-A1B1C1的底面是正三角形,所有棱长都是6,顶点A1在底面ABC内的射影是△ABC的中心,则四面体A1ABC,B1ABC,C1ABC公共部分的体积等于(  )
A.6$\sqrt{2}$B.6$\sqrt{3}$C.12$\sqrt{2}$D.12$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知i是虚数单位,设复数z1=1+i,z2=1+2i,则$\frac{{z}_{1}}{{z}_{2}}$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为135°,则E的离心率为(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.$\sqrt{2}$D.$\root{4}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知映射f:P→Q是从P到Q的一个函数,则P,Q的元素(  )
A.可以是点B.可以是方程C.必须是实数D.可以是三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计算:
(1)$\frac{5}{6}{a}^{\frac{1}{3}{b}^{-2}}$×(-3a${\;}^{-\frac{1}{2}}$b-1)÷(4a${\;}^{\frac{2}{3}}$b-3)${\;}^{\frac{1}{2}}$;
(2)log3$\sqrt{27}$+lg4+lg25+6${\;}^{lo{g}_{4}}$2+(-2)0

查看答案和解析>>

同步练习册答案