精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥P﹣ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,PA⊥底面ABCD,E是棱PD上异于P,D的动点.设 =m,则“0<m<2”是三棱锥C﹣ABE的体积不小于1的(

A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件

【答案】B
【解析】解:经过点E作EH⊥AD,垂足为H,
∵PA⊥底面ABCD,∴平面PAD⊥平面ABCD.
则EH⊥平面ABCD,
∵VCABE=VEABC
∴VCABE= = ×EH= ≥1,
则EH
又PA=3, ,∴ ,∴ =m≤2﹣1=1,
∴“0<m<2”是三棱锥C﹣ABE的体积不小于1的必要不充分条件.
故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列函数中在 上为减函数的是(
A.y=2cos2x﹣1
B.y=﹣tanx
C.
D.y=sin2x+cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

(1)求实数的值;

(2)判断的单调性并用定义证明;

(3)已知不等式恒成立, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的空间几何体中,平面ACD⊥平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角为60°,且点E在平面ABC上的射影落在∠ABC的平分线上.

(1)求证:DE∥平面ABC;
(2)求二面角E﹣BC﹣A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一年级某次数学竞赛随机抽取100名学生的成绩,分组为[50,60),[60,70),[70,80),[80,90),[90,100],统计后得到频率分布直方图如图所示:

(1)试估计这组样本数据的众数和中位数(结果精确到0.1);

(2)年级决定在成绩[70,100]中用分层抽样抽取6人组成一个调研小组,对高一年级学生课外学习数学的情况做一个调查,则在[70,80),[80,90),[90,100]这三组分别抽取了多少人?

(3)现在要从(2)中抽取的6人中选出正副2个小组长,求成绩在[80,90)中至少有1人当选为正、副小组长的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知指数函数yg(x)满足:g(3)=8,定义域为R的函数f(x)=是奇函数.

(1)确定yf(x)yg(x)的解析式;

(2)判断函数f(x)的单调性,并用定义证明;

(3)若对于任意x∈[-5,-1],都有f(1-x)+f(1-2x)>0成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的单调区间;

(2)对任意的,恒有,求正实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点、焦点在x轴上的椭圆C1与双曲线C2有共同的焦点,设左右焦点分别为F1,F2,P是C1与C2在第一象限的交点, PF1F2是以PF1为底边的等腰三角形,若椭圆与双曲线的离心率分别为e1,e2,则e1·e2的取值范围是( )

A. (,+) B. (,+) C. (,+) D. (0,+)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆+y2=1上两个不同的点A,B关于直线y=mx+对称.

(1)求实数m的取值范围;

(2)求△AOB面积的最大值(O为坐标原点).

查看答案和解析>>

同步练习册答案