精英家教网 > 高中数学 > 题目详情
a,b,c是三条直线,α,β是两个平面,b?α,c?α,则下列命题不成立的是(  )
A.若α∥β,c⊥α,则c⊥β
B.“若b⊥β,则α⊥β”的逆命题
C.若a是c在α内的射影,a⊥b,则b⊥c
D.“若b∥c,则c∥α”的逆否命题
B
一条直线垂直于两个平行平面中的一个,则垂直于另一个,故A正确;若c∥α,∵a是c在α内的射影,∴c∥a.∵b⊥a,∴b⊥c;若c与α相交,则c与a相交,由线面垂直的性质与判定定理知,若b⊥a,则b⊥c,故C正确;∵b?α,c?α,b∥c,∴c∥α,因此原命题“若b∥c,则c∥α”为真,从而其逆否命题也为真,故D正确;当α⊥β时,平面α内的直线不一定垂直于平面β,故B不成立.
【误区警示】平面几何中的一些结论引用到立体几何中造成错误.对空间中位置关系的考虑不周,也是造成判断错误的因素.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知如图①所示,矩形纸片AA′A1′A1,点B、C、B1、C1分别为AA′、A1A1′的三等分点,将矩形纸片沿BB1、CC1折成如图②形状(正三棱柱),若面对角线AB1⊥BC1,求证:A1C⊥AB1.

(图①)

(图②)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,分别为的中点,.

(1)证明:∥面
(2)证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,点C是以AB为直径的圆上的一点,直角梯形BCDE所在平面与圆O所在平面垂直,且DEBCDCBCDEBC.

(1)证明:EO∥平面ACD
(2)证明:平面ACD⊥平面BCDE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱ABCA1B1C1的侧棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1的中点,FAB的中点,ACBC=1,AA1=2.

(1)求证:CF∥平面AB1E
(2)求三棱锥CAB1E在底面AB1E上的高.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在多面体中,四边形是正方形,.

(1)求证:面
(2)求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用a,b,c表示三条不同的直线,γ表示平面,给出下列命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.
其中真命题的序号是(  )
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平面α∥平面β,P是α,β外一点,过点P的直线m分别与α,β交于A,C,过点P的直线n分别与α,β交于B,D,且PA=6,AC=9,PD=8,则BD的长为    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设α,β表示两个不同平面,l,m表示两条不同的直线,则下列命题正确的是(  )
A.若l⊥m,l?α,m?β,则α⊥β
B.若l⊥α,m∥β,α⊥β,则l⊥m
C.若l∥m,l?α,m⊥β,则α∥β
D.若l⊥α,m⊥β,α∥β,则l∥m

查看答案和解析>>

同步练习册答案