精英家教网 > 高中数学 > 题目详情

【题目】已知直线与抛物线 相交于 两点, 是线段的中点,过轴的垂线交于点.

(Ⅰ)证明:抛物线在点处的切线与平行;

(Ⅱ)是否存在实数使?若存在,求的值;若不存在,说明理由.

【答案】(Ⅰ)详见解析;(Ⅱ)存在, .

【解析】试题分析:()直线方程与抛物线方程联立,设 得到根与系数的关系,并利用中点坐标等求点的坐标,并且设切线方程为 ,与抛物线方程联立, ,解得 ,得证;(中,斜边的中线等于斜边的一半,所以 ,利用两点间距离和弦长公式,建立等量关系求 .

试题解析:(Ⅰ)由 消去并整理,得

,则

由题设条件可知,

设抛物线在点处的切线的方程为

代入上式,得

直线与抛物线相切,

,即.

(Ⅱ)假设存在实数,使,则,

的中点, ,

由(Ⅰ)得

轴,

,解得

故存在,使.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设点P(x,y)是曲线a|x|+b|y|=1(a≥0,b≥0)上任意一点,其坐标(x,y)均满足 ,则 a+b取值范围为(
A.(0,2]
B.[1,2]
C.[1,+∞)
D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求函数的单调递减区间;

(2)当时,设函数.若函数在区间上有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正四棱锥P﹣ABCD,B1为PB的中点,D1为PD的中点,则两个棱锥A﹣B1CD1 , P﹣ABCD的体积之比是(
A.1:4
B.3:8
C.1:2
D.2:3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,Rt△O′A′B′是一平面图形的直观图,直角边O′B′=1,则这个平面图形的面积是(
A.
B.1
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|1≤x≤7},B={x|﹣2m+1<x<m},全集为实数集R.
(1)若m=5,求A∪B,(RA)∩B;
(2)若A∩B=A,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:(4x﹣3)2≤1;命题q:x2﹣(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C: =1(a>b>0)的离心率为 ,其左焦点到点P(2,1)的距离为
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(Ⅰ)求不等式﹣x2﹣2x+3<0的解集(用集合或区间表示) (Ⅱ)求不等式|x﹣3|<1的解集(用集合或区间表示)

查看答案和解析>>

同步练习册答案