精英家教网 > 高中数学 > 题目详情

如图,已知平面平面,且四边形为矩形,四边形为直角梯形,
,,,,.
(1)作出这个几何体的三视图(不要求写作法).
(2)设是直线上的动点,判断并证明直线与直线的位置关系.
(3) 求三棱锥的体积.[来.

(1)见解答.   (2)垂直.   (3).

解析试题分析:(1)根据几何体在三个方向的投影即可得其三视图;(2)一般地判断两直线的位置关系,都应该从平行与垂直两个方向去考虑.在本题中,直线与直线明显不平行,故朝垂直的方向考虑.连接,结合题设易得平面,从而得.(3)结合该几何体的特征,可将面ADE补为一个矩形,这样便可作出EF在面ADE内的射影,从而求得EF与平面AED所成的角的余弦..
(1)该几何体的三视图如下图所示:

(2)连接
因为,所以平面
所以.

(3)因为,所以平面
又平面平面,从而,所以点G是CE的中点.
由此可得,从而平面.
所以过E作.
考点:1、三视图;2、空间两直线的位置关系;3、空间几何体的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.

(1)证明:PQ⊥平面DCQ;
(2)求棱锥Q­ABCD的体积与棱锥P­DCQ的体积的比值.[来

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱ABC-A1B1C1中, D、E分别是AB,BB1的中点.

(1)证明: BC1//平面A1CD;
(2)设AA1="AC=CB=1," AB=,求三棱锥D一A1CE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD为正方形,DA⊥面ABP,AB=1,PA=2,∠PAB=60°.
(1)求证:平面PBC⊥面PDC
(2)设E为PC上一点,若二面角B-EA-P的余弦值为-,求三棱锥E-PAB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD, .

(1)证明: A1BD // 平面CD1B1;
(2)求三棱柱ABD-A1B1D1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,,M是线段AE上的动点.
(1)试确定点M的位置,使AC∥平面MDF,并说明理由;
(2)在(1)的条件下,求平面MDF将几何体ADE-BCF分成的两部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在五面体中,已知平面

(1)求证:
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆台的上、下底面半径分别是2、6,且侧面面积等于两底面面积之和。
(1)求该圆台的母线长;(2)求该圆台的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:填空题


连结球面上两点的线段称为球的弦.半径为4的球的两条弦的长度分别等于,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为         

查看答案和解析>>

同步练习册答案