精英家教网 > 高中数学 > 题目详情
设集合A={x,y},B={0,x2},若A=B,则2x+y等于(  )
分析:根据集合相等得到x=0或y=0,然后分别验证是否成立即可.
解答:解:因为A={x,y},B={0,x2},若A=B,则
x=0
y=x2
x=x2
y=0

解得
x=0
y=0
x=1
y=0

当x=0时,B={0,0}不成立.
当x=1,y=0时,A={1,0},B={0,1},满足条件.
所以2x+y=2.
故选C.
点评:本题主要考查集合相等的应用,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)设集合A={(x,y)|
y2
a2
-x2=1,a>1}
B={(x,y)|y=tx,t>
2a
,t≠1}
,则A∩B的子集的个数是(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x,y|y=ax+1},B={x,y|y=|x|},若A∩B的子集恰有2个,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)定义在R上,对于任意实数m、n,恒有f(m+n)=f(m)?f(n),且当x>0时,0<f(x)<1.
(1)求证:f(0)=1,且当x<0时,f(x)>1;
(2)设集合A={(x,y)|f(x2)?f(y2)>f(1)},B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)设集合A={x,y|y=
4-x2
},B={x,y|y=k(x-b)+1},若对任意0≤k≤1都有A∩B≠∅,则实数b的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={(x,y)|x2-
y2
36
=1},B={(x,y)|y=3x}
,则A∩B的子集的个数是(  )
A、2B、4C、6D、8

查看答案和解析>>

同步练习册答案