精英家教网 > 高中数学 > 题目详情

【题目】(Ⅰ)比较下列两组实数的大小: ① ﹣1与2﹣ ;②2﹣
(Ⅱ)类比以上结论,写出一个更具一般意义的结论,并给出证明.

【答案】解:(Ⅰ)①( + 2﹣(2+1)2=2 ﹣4>0.

+ >2+1,即 ﹣1>2﹣

②(2+ 2﹣( + 2=4 ﹣2 =2 ﹣2 >0.

故2+ + ,即2﹣

(Ⅱ)由(Ⅰ)可得一般结论:若n是正整数,则

证明如下:左﹣右=( )﹣( )= = >0,

则有


【解析】(Ⅰ)根据题意,对于①、②,将不等式的左右两边同时平方,再作差比较大小,即可得答案;(Ⅱ)由(Ⅰ)可得一般结论:若n是正整数,则 ,利用作差法证明即可得证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了研究“教学方式”对教学质量的影响,某高中数学老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).如图所示茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.
(1)现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为87分的同学至少有一名被抽中的概率;
(2)学校规定:成绩不低于75分的为优秀.请填写下面的2×2表,并判断有多大把握认为“成绩优秀与教学方式有关”.

甲班

乙班

合计

优秀

不优秀

合计

下面临界值表仅供参考:

P(x2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.79

10.828

(参考公式:x2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式 的解集为( )
A.(﹣1,0)∪(1,+∞)
B.(﹣∞,﹣1)∪(0,1)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地方政府欲将一块如图所示的直角梯形ABCD空地改建为健身娱乐广场,已知AD∥BC,AD⊥AB,AD=2BC=2 百米,AB=3百米,广场入口P在AB上,且AP=2BP,根据规划,过点P铺设两条互相垂直的笔直小路PM、PN(小路宽度不计),点M、N分别在边AD、BC上(包含端点),△PAM区域拟建为跳舞健身广场,△PBN区域拟建为儿童乐园,其他区域铺设绿化草坪,设∠APM=θ.
(1)求绿化草坪面积的最大值;
(2)现拟将两条小路PN、PN进行不同风格的美化,小路PM的美化费用为每百米1万元,小路PN的美化费用为每百米2万元,试确定点M,N的位置,使得小路PM,PN的总美化费用最低,并求出最低费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方形ABCD的边长为2,若将正方形ABCD沿对角线BD折叠为三棱锥 ,则在折叠过程中,不能出现( )
A.
B.平面 平面CBD
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知g(x)是各项系数均为整数的多项式,f(x)=2x2﹣x+1,且满足f(g(x))=2x4+4x3+13x2+11x+16,则g(x)的各项系数之和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市出租车的现行计价标准是:路程在2 km以内(含2 km)按起步价8元收取,超过2 km后的路程按1.9 元/km收取,但超过10 km后的路程需加收50%的返空费(即单价为1.9×(1+50%)=2.85(元/km)).
(1)将某乘客搭乘一次出租车的费用f(x)(单位:元)表示为行程x(0<x≤60,单位:km)的分段函数;
(2)某乘客的行程为16 km,他准备先乘一辆出租车行驶8 km后,再换乘另一辆出租车完成余下行程,请问:他这样做是否比只乘一辆出租车完成全部行程更省钱?
(现实中要计等待时间且最终付费取整数,本题在计算时都不予考虑)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若f(x)的图象与直线y=kx有两个不同的交点,则实数k的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,集合A={x|x2+x>0},集合B= ,则(UA)∪B=(
A.[0,2)
B.[﹣1,0]
C.[﹣1,2)
D.(﹣∞,2)

查看答案和解析>>

同步练习册答案