【题目】如图,已知四棱锥的底面为矩形,D为的中点,AC⊥平面BCC1B1.
(Ⅰ)证明:AB//平面CDB1;
(Ⅱ)若AC=BC=1,BB1=,
(1)求BD的长;
(2)求B1D与平面ABB1所成角的正弦值.
【答案】(Ⅰ)见解析;(Ⅱ) (1),(2).
【解析】试题分析:(Ⅰ)利用中位线定理得出DE//AB,即可证得;
(Ⅱ)(1)在中,利用勾股定理运算即可;
(2)以C为原点,CB所在的直线为x轴、CC1为y轴建立空间直角坐标系,利用向量求解线面角即可.
试题解析:
(Ⅰ)证明:连结交于E,连结DE,
∵D、E分别为和的中点,
∴DE//AB,
又∵平面, 平面,
∴AB//平面CDB1;
(Ⅱ)(1)∵AC⊥平面BCC1B1, 平面,
∴,
又∵, ,
∴平面,
∵平面,
∴,
在,∵BC=1, ,
∴;
【注:以上加灰色底纹的条件不写不扣分!】
(2)依题意知AC、BC、CC1两两互相垂直,以C为原点,CB所在的直线为x轴、CC1为y轴建立空间直角坐标系如图示,
易得, ,
, ,
故,,,
设平面的一个法向量为,
由得令得,
设与平面所成的角为,则 ,
即与平面所成的角的正弦值为.
【其它解法请参照给分,如先用体积法求出点D到平面ABB1的距离,(10分)再用公式算与平面所成角的正弦值(12分)】
科目:高中数学 来源: 题型:
【题目】(本题满分12分)某公司的广告费支出x与销售额y(单位:万元)之间有下列对应数据
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)画出散点图,并判断广告费与销售额是否具有相关关系;
(2)根据表中提供的数据,用最小二乘法求出y与x的回归方程;
(3)预测销售额为115万元时,大约需要多少万元广告费。
参考公式:回归方程为其中,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且过点.
(Ⅰ)求椭圆的方程.
(Ⅱ)若, 是椭圆上两个不同的动点,且使的角平分线垂直于轴,试判断直线的斜率是否为定值?若是,求出该值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx- (1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.
(1)求炮的最大射程;
(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,函数.
(1)若的定义域为,求实数的取值范围;
(2)当时,求函数的最小值;
(3)是否存在非负实数,使得函数的定义域为,值域为,若存在,求出的值;若不存在,则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为(为参数),曲线的参数方程为(为参数),在以为极点,轴的正半轴为极轴的极坐标系中,射线,与,各有一个交点,当时,这两个交点间的距离为2,当,这两个交点重合.
(1)分别说明,是什么曲线,并求出与的值;
(2)设当时,与,的交点分别为,当,与,的交点分别为,求四边形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据四川省民政厅报告,2013年6月29日以来,四川省中东部出现强降雨天气过程,局地出现大暴雨.暴雨洪涝灾害已造成遂宁、德阳、绵阳等12市34县(市、区)244万人受灾,共造成直接经济损失85502.41万元.适逢暑假,小王在某小区调查了50户居民由于洪灾造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出频率分布直方图(如图).
(1)若先从损失超过6000元的居民中随机抽出2户进行调查,求这2户不在同一小组的概率;(2)洪灾过后小区居委会号召小区居民为洪灾重灾区捐款,小王调查的50户居民的捐款情况如表,在表格空白处填写正确的数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:临界值表参考公式:K2=.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com