精英家教网 > 高中数学 > 题目详情
如图,已知正三角形PAD,正方形ABCD,平面PAD⊥平面ABCD,E为PD的中点.
(1)求证:CD⊥AE;
(2)求证:AE⊥平面PCD;
(3)求直线AC与平面PCD所成的角的大小的正弦..
(1)取AD的中点O,由正△PAD可得PO⊥AD,
∵平面PAD⊥平面ABCD,∴PO⊥平面ABCD,∴PO⊥CD.
又∵CD⊥AD,PO∩AD=O,
∴CD⊥平面PAD,
∴CD⊥AE.
(2)由(1)可知:CD⊥AE.
∵E为正三角形PAD的边PD的中点,∴AE⊥PD.
∵CD∩PD=D,∴AE⊥平面PCD.
(3)由(2)可知:AE⊥平面PCD.
∴∠ACE即为直线AC与平面PCD所成的角.
不妨设AD=2.
则AE=
3
,AC=2
2

sin∠ACE=
AE
AC
=
6
4
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

在正三棱柱ABC-A1B1C1中,若AB=
2
,BB1=1,则AB1与C1B所成角的大小为(  )
A.60°B.90°C.105°D.75°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知a和b是成60°角的两条异面直线,则过空间一点且与a和b都成60°角的直线共有(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理)如图,单位正方体ABCD-A1B1C1D1,E,F分别是棱C1D1和B1C1的中点,试求:
(Ⅰ)AF与平面BEB1所成角的余弦值;
(Ⅱ)点A到面BEB1的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正方体ABCD-A1B1C1D1中,直线AD1与平面ABCD所成的角的大小为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正△ABC的顶点A在平面α上,顶点B、C在平面α的同一侧,D为BC的中点,若△ABC在平面α上的投影是以A为直角顶点的三角形,则直线AD与平面α所成角的正弦值的范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示的四棱锥,SD垂直于正方形ABCD所在的底面,AB=1,SB=
3

(1)求证:BC⊥SC;
(2)求SB与底面ABCD所成角的正切值;
(3)设棱SA的中点为M,求异面直线DM与SC所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知三棱柱ABC-A1B1C1的侧棱长与底面边长都等于1,A1在底面ABC上的射影D为BC的中点,则侧棱AA1与底面ABC所成角的大小为______,此三棱柱的体积为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,将一副三角板拼接,使它们有公共边BC,且使两个三角形所在的平面互相垂直,若∠BAC=90°,AB=AC,∠CBD=90°,∠BDC=60°,BC=6.
(1)求证:平面ABD⊥平面ACD;
(2)求二面角A-CD-B的平面角的正切值;
(3)求异面直线AD与BC间的距离.

查看答案和解析>>

同步练习册答案