精英家教网 > 高中数学 > 题目详情

对于三次函数),给出定义:设是函数的导数,是函数的导数,若方程有实数解,则称点为函数的“拐点”,某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数,请你根据上面探究结果,计算+…++=       .

 

【答案】

2013

【解析】

试题分析:由题意可得.所以.所以.令可得.所以函数f(x)的拐点即对称中心为.即如果,则.所以+…++=.故填2013.

考点:1.新定义函数.2.函数的求导.3.函数的对称性.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•昌平区二模)对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是函数f′(x)的导数,若方程f″(x)=0有实数解x0,则称(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数f(x)=
1
3
x3-
1
2
x2+3x-
5
12
,请你根据上面探究结果,解答以下问题
(1)函数f(x)=
1
3
x3-
1
2
x2+3x-
5
12
的对称中心为
1
2
,1)
1
2
,1)

(2)计算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)
+…+f(
2012
2013
)=
2012
2012

查看答案和解析>>

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f'(x)是函数y=f(x)的导数,f''是f'(x)的导数,若方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f(x)=
1
3
x3-
1
2
x2+3x-
5
12
,请你根据这一发现,求:
(1)函数f(x)=
1
3
x3-
1
2
x2+3x-
5
12
对称中心为
(
1
2
,1)
(
1
2
,1)

(2)计算f(
1
2011
)+f(
2
2011
)+f(
3
2011
)+f(
4
2011
)+…+f(
2010
2011
)
=
2010
2010

查看答案和解析>>

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f′′(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=
1
3
x3-
1
2
x2+3x-
5
12
,则g(
1
2013
)+g(
2
2013
)+…+g(
2012
2013
)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:f′(x)是函数f(x)的导函数,f″(x)是f′(x)的导函数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经研究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且拐点就是对称中心. 若f(x)=
1
3
x3-
1
2
x2+3x-
5
12
,请你根据这一发现,求:
(1)函数f(x)=
1
3
x3-
1
2
x2+3x-
5
12
的对称中心为
 

(2)f(
1
2014
)+f(
2
2014
)+…+f(
2013
2014
)
=
 

查看答案和解析>>

同步练习册答案