精英家教网 > 高中数学 > 题目详情

【题目】2018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品的研发费用(百万元)和销量(万盒)的统计数据如下:

研发费用(百万元)

2

3

6

10

13

15

18

21

销量(万盒)

1

1

2

2.5

3.5

3.5

4.5

6

1)根据数据用最小二乘法求出的线性回归方程(系数用分数表示,不能用小数);

2)该药企准备生产药品的三类不同的剂型,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型合格的概率分别为,第二次检测时,三类剂型合格的概率分别为.两次检测过程相互独立,设经过两次检测后三类剂型合格的种类数为,求的分布列与数学期望.

附:(12.

【答案】12)分布列见解析,

【解析】

1)直接利用回归方程公式计算得到答案.

2可取,计算概率得到分布列,再计算数学期望得到答案.

1

由公式

.

2)药品的三类剂型经过两次检测后合格分别为事件

由题意,可取

.

的分布列为:

0

1

2

3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,O、E分别是BD、BC的中点,.

(1)求证:平面BCD;

(2)求异面直线AB与CD所成角的余弦值;

(3)求点E到平面ACD的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的方程为.在以原点O为极点,x轴正半轴为极轴的极坐标系中,P的极坐标为,直线l过点P.

1)若直线lOP垂直,求直线l的直角标方程:

2)若直线l与曲线C交于AB两点,且,求直线l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信运动,是由腾讯开发的一个类似计步数据库的公众账号.用户可以通过关注微信运动公众号查看自己每天或每月行走的步数,同时也可以和其他用户进行运动量的或点赞.加入微信运动后,为了让自己的步数能领先于朋友,人们运动的积极性明显增强,下面是某人20181月至201811月期间每月跑步的平均里程(单位:十公里)的数据,绘制了下面的折线图.

根据折线图,下列结论正确的是(

A. 月跑步平均里程的中位数为月份对应的里程数

B. 月跑步平均里程逐月增加

C. 月跑步平均里程高峰期大致在

D. 月至月的月跑步平均里程相对于月至月,波动性更小,变化比较平稳

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直四棱柱被平面所截,所得的一部分如图所示,

1)证明:平面

2)若,平面与平面所成角的正切值为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在①成等差数列;②成等比数列;③三个条件中任选一个,补充在下面的问题中,并加以解答.

已知的内角所对的边分别是,面积为.若__________,且,试判断的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱中,平面为棱的中点

1)证明:

2)设点在线段上,且直线与平面所成角的正弦值为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点到其准线的距离为.

1)求抛物线的方程;

2)如图为抛物线上三个点,,若四边形为菱形,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点,离心率为,点是椭圆上的动点,的最大面积是

1)求椭圆的方程;

2)圆E经过椭圆的左、右焦点,且与椭圆在第一象限的交点为,且三点共线,为坐标原点,直线交椭圆于两点,且

i 求直线的斜率;

ii)当的面积取到最大值时,求直线的方程.

查看答案和解析>>

同步练习册答案