精英家教网 > 高中数学 > 题目详情
精英家教网在△ABC中,AB=AC=5,BC=6,PA⊥平面ABC,PA=8,求点P到BC的距离.
分析:由P是等腰三角形ABC所在平面外一点,PA⊥平面ABC,我们易得PB=PC,取BC的中点D,则AD⊥BC,且PD⊥BC,利用勾股定理我们易求出AD的长,进而求出PD的长,即点P到BC的距离.
解答:精英家教网解:取BC的中点O,连接AO,PO,则BC⊥AO.(2分)
∵PA⊥BC,PA∩AO=A,
∴BC⊥平面PAO.(5分)
又PO?平面PAO,
∴BC⊥PO,(8分)
∴线段PO的长即为P到BC的距离,(10分)
在Rt△ABO中,AO=
52-32
=4,
在Rt△PAO中,PO=
82+42
=4
5

∴点P到BC的距离是4
5
.(13分)
点评:本题考查的知识点是空间点、线、面之间的距离,其中利用三角形的性质,做出PD即为点P到BC的垂线段是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,AB=AC,D、E分别是AB、AC的中点,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=4,AC=2,S△ABC=2
3

(1)求△ABC外接圆的面积.
( 2)求cos(2B+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=a,AC=b,当
a
b
<0
时,△ABC为
钝角三角形
钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=2,BC=3,AC=
7
,则△ABC的面积为
3
3
2
3
3
2
,△ABC的外接圆的面积为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,
AB
=
a
AC
=
b
,M为AB的中点,
BN
=
1
3
BC
,则
 

查看答案和解析>>

同步练习册答案