精英家教网 > 高中数学 > 题目详情

【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在(单位:克)中,经统计得频率分布直方图如图所示.

(1) 试估计这组数据的众数、中位数、平均数;

(2)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有个,经销商提出如下两种收购方案:

A:所有芒果以元/千克收购;

B:对质量低于克的芒果以元/个收购,高于或等于克的以元/个收购.

通过计算确定种植园选择哪种方案获利更多?

【答案】(1)众数,中位数,平均数分别为275;268.75;257.5;(2)B方案

【解析】

1)利用频率分布直方图能求出该样本的中位数,众数,平均数.

2)分别求出方案A和方案B的获利,进行比较即可得到答案.

1)由频率分布直方图得众数为:275.

[100250)的频率为(0.002+0.002+0.003)×500.35[250300)的频率为0.008×500.4

∴该样本的中位数为:250+268.75

平均数为: .

(2)方案A:元.

方案B:由题意得低于250克:元;

高于或等于250克

故的总计元.

由于,故B方案获利更多,应选B方案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程是为参数),以为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为,且直线与曲线交于两点.

(Ⅰ)求直线的普通方程及曲线的直角坐标方程;

(Ⅱ)把直线轴的交点记为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“节约用水”自古以来就是中华民族的优良传统.某市统计局调查了该市众多家庭的用水量情况,绘制了月用水量的频率分布直方图,如下图所示.将月用水量落入各组的频率视为概率,并假设每天的用水量相互独立.

(l)求在未来连续3个月里,有连续2个月的月用水量都不低于12吨且另1个月的月用水量低于4吨的概率;

(2)用表示在未来3个月里月用水量不低于12吨的月数,求随杌变量的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,i是虚数单位,命题p:在复平面内,复数z1=a+ 对应的点位于第二象限;命题q:复数z2=a﹣i的模等于2,若p∧q是真命题,则实数a的值等于(
A.﹣1或1
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)的导函数,讨论的零点个数;

(2)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元. (Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,n∈N)的函数解析式f(n);
(Ⅱ)该商场记录了去年夏天(共10周)空调器需求量n(单位:台),整理得表:

周需求量n

18

19

20

21

22

频数

1

2

3

3

1

以10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,X表示当周的利润(单位:元),求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一只药用昆虫的产卵数与一定范围内的温度有关,现收集了该种药用昆虫的6组观测数据如下表:

温度

21

23

24

27

29

32

产卵数/个

6

11

20

27

57

77

(1)若用线性回归模型,求关于的回归方程(精确到0.1);

(2)若用非线性回归模型求的回归方程为,且相关指数

①试与(1)中的线性回归模型相比,用说明哪种模型的拟合效果更好.

②用拟合效果好的模型预测温度为时该种药用昆虫的产卵数(结果取整数).

附:一组数据,其回归直线的斜率和截距的最小二乘估计为;相关指数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知: =(﹣ sinωx,cosωx), =(cosωx,cosωx),ω>0,记函数f(x)= ,且f(x)的最小正周期为π.
(1)求ω的值;
(2)求f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线

1)若直线被圆截得的弦长为,求实数的值;

(2)当时,由直线上的动点引圆的两条切线,若切点分别为,则在直线上是否存在一个定点?若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案