精英家教网 > 高中数学 > 题目详情
14.已知实数x、y满足$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{x≥-1}\end{array}\right.$,则目标函数z=2x-y的最小值为-1.

分析 作平面区域,从而化简z=2x-y为y=2x-z,-z是直线的截距,从而解得.

解答 解:作平面区域如图,
化简z=2x-y为y=2x-z,-z是直线的截距,
故当z=2x-y过点B(-1,-1)时,有最小值,
故目标函数z=2x-y的最小值为-2=1=-1;
故答案为:-1.

点评 本题考查了线性规划的解法及数形结合的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.关于x,y的一元二次方程组$\left\{{\begin{array}{l}{2x+3y=1}\\{x-2y=2}\end{array}}\right.$的系数矩阵$(\begin{array}{cc}2&3\\ 1&-2\end{array}\right.)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线a的倾斜角为45°,则a的斜率是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若直线方程$x+\sqrt{3}y=0$,那么直线的倾斜角是(  )
A.30°B.150°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列有关命题的说法错误的是(  )
A.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠-1,则x2-3x+2≠0”
B.若p∧q为假命题,则p、q均为假命题
C.“x=1”是“x2-3x+2=0的充分不必要条件”
D.对于命题p:?x0∈R使得x02+x0+1<0,则¬p:?x∈R,均有x2+x+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如果复数z=$\frac{6-bi}{1+2i}$(其中i为虚数单位,b为实数)的实部和虚部互为相反数.
①求z.
②求|z|.
③负数z在复平面内对应的点在第几象限.
④若z(m+i)是纯虚数,求m的值.
⑤求($\frac{z}{\overline{z}}$)2016

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.有3名男生,2名女生,在下列不同要求下,求不同的排列方法总数.
(1)全体排成一行,其中甲只能在中间或者两边的位置,共72种排法;
(2)全体排成一行,其中男生必须排在一起,共36种排法;
(3)全体排成一行,男生不能排在一起,共12种排法;
(4)全体排成一行,其中甲、乙、丙三人从左到右的顺序不变,共20种排法;
(5)全体排成一行,其中甲不再最左边,乙不在最右边,共78种排法;
(6)若再加入一名女生,全体排成一行,男女各不相邻,共144种排法;
(7)排成前后两排,前排3人,后排2人,共120种排法;
(8)全体排成一行,甲、乙两人中间必须有1人,共36种排法.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$f(x)=\left\{\begin{array}{l}{x^2}-4x+3,\;\;x≤0\\-{x^2}-2x+3,\;\;x>0\end{array}\right.$,当x∈[a,a+1]时不等式f(x+a)≥f(2a-x)恒成立,则实数a的最大值是-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆x2+y2-2x-4y+m=0与直线l:x+2y-4=0相交于M,N两点,且|MN|=$\frac{4}{\sqrt{5}}$,试求m的值.

查看答案和解析>>

同步练习册答案