【题目】在的表格填上数字,设在第i行第j列所组成的数字为,,,则表格中共有5个1的填表方法种数为______.
【答案】326
【解析】
根据题意,按数字1出现的位置分三种情况讨论,、5个1都出现在即、、、、这5个表格中,、有1个1出现在、、、、这5个表格中,剩余4个1在其他位置,、有3个1出现在、、、、这5个表格中,剩余2个1在其他位置,分别求出每种情况下填表方法的数目,进而由分类计数原理计算可得答案.
解:根据题意,在的表格中,有5个的表格,即、、、、,10个的表格,10个的表格;
要求的表格种恰有5个1,则对1出现的位置分3种情况讨论:
、5个1都出现在即、、、、这5个表格中,有1种情况;
、有1个1出现在、、、、这5个表格中,剩余4个1在其他位置,
需要先在、、、、这5个表格中,选出1个,有种情况,
在剩下的10个表格中,任选2个,有种情况,
则有种填表方法;
、有3个1出现在、、、、这5个表格中,剩余2个1在其他位置,
需要先在、、、、这5个表格中,选出3个,有种情况,
在剩下的10个表格中,任选1个,有种情况,
则有种填表方法;
则一共有种填表方法;
故答案为:326.
科目:高中数学 来源: 题型:
【题目】如图,地图上有一竖直放置的圆形标志物,圆心为C,与地面的接触点为G.与圆形标志物在同一平面内的地面上点P处有一个观测点,且PG=50m.在观测点正前方10m处(即PD=10m)有一个高位10m(即ED=10m)的广告牌遮住了视线,因此在观测点所能看到的圆形标志的最大部分即为图中从A到F的圆弧.
(1)若圆形标志物半径为25m,以PG所在直线为X轴,G为坐标原点,建立直角坐标系,求圆C和直线PF的方程;
(2)若在点P处观测该圆形标志的最大视角(即)的正切值为,求该圆形标志物的半径.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知、是双曲线:(,)的两个顶点,点是双曲线上异于、的一点,为坐标原点,射线交椭圆:于点,设直线、、、的斜率分别为、、、.
(1)若双曲线的渐近线方程是,且过点,求的方程;
(2)在(1)的条件下,如果,求△的面积;
(3)试问:是否为定值?如果是,请求出此定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,过作轴的垂线交椭圆于点(点在轴上方),斜率为的直线交椭圆于,两点,过点作直线交椭圆于点,且,直线交轴于点.
(1)设椭圆的离心率为,当点为椭圆的右顶点时,的坐标为,求的值.
(2)若椭圆的方程为,且,是否存在使得成立?如果存在,求出的值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知、是双曲线的两个顶点,点是双曲线上异于、的一点,为坐标原点,射线交椭圆于点,设直线、、、的斜率分别为、、、.
(1)若双曲线的渐近线方程是,且过点,求的方程;
(2)在(1)的条件下,如果,求的面积;
(3)试问:是否为定值?如果是,请求出此定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高二理科1班共有50名学生参加学业水平模拟考试,成绩(单位:分,满分100分)大于或等于90分的为优秀,其中语文成绩近似服从正态分布,数学成绩的频率分布直方图如图.
(1)这50名学生中本次考试语文、数学成绩优秀的大约各有多少人?
(2)如果语文和数学两科成绩都优秀的共有4人,从语文优秀或数学优秀的这些同学中随机抽取3人,设3人中两科都优秀的有X人,求X的分布列和数学期望;
(3)根据(1)(2)的数据,是否有99%以上的把握认为语文成绩优秀的同学,数学成绩也优秀?
语文优秀 | 语文不优秀 | 合计 | |
数学优秀 | |||
数学不优秀 | |||
合计 |
附:①若,则,;②;
③
0.1 | 0.05 | 0.025 | 0.010 | p>0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知实数,,对于定义在上的函数,有下述命题:
①“是奇函数”的充要条件是“函数的图像关于点对称”;
②“是偶函数”的充要条件是“函数的图像关于直线对称”;
③“是的一个周期”的充要条件是“对任意的,都有”;
④“函数与的图像关于轴对称”的充要条件是“”
其中正确命题的序号是( )
A.①②B.②③C.①④D.③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com