【题目】如图,在平面直角坐标系中,以轴正半轴为始边的锐角和钝角的终边分别与单位圆交于点,若点的横坐标是,点的纵坐标是.
(1)求的值;
(2)求的值.
【答案】(1)-(2)
【解析】
试题分析:(1)由任意角的三角函数的定义得cosα=,再根据同角三角函数关系及锐角范围求得sinα==.同理由任意角的三角函数的定义得sinβ=,再根据同角三角函数关系及锐角范围求得cosβ=-=-.最后根据两角差余弦公式得cos(α-β)=cosαcosβ+sinαsinβ
=×(-)+×=-.(2)由于的范围为(,),所以先求的正弦值:sin(α+β)=sinαcosβ+cosαsinβ=×(-)+×=,再根据正弦函数单调性确定的值
试题解析:因为锐角α的终边与单位圆交于A,且点A的横坐标是,
所以,由任意角的三角函数的定义可知,cosα=,
从而sinα==.
因为钝角β的终边与单位圆交于点B,且点B的纵坐标是,
所以sinβ=,从而cosβ=-=-.
(1)cos(α-β)=cosαcosβ+sinαsinβ
=×(-)+×=-.
(2)sin(α+β)=sinαcosβ+cosαsinβ
=×(-)+×=.
因为α为锐角,β为钝角,故α+β∈(,),
所以α+β=.
科目:高中数学 来源: 题型:
【题目】某蛋糕店每天制作生日蛋糕若干个,每个生日蛋糕的成本为50元,然后以每个100元的价格出售,如果当天卖不完,剩下的蛋糕作垃圾处理.现需决策此蛋糕店每天应该制作几个生日蛋糕,为此搜集并整理了100天生日蛋糕的日需求量(单位:个),得到如图所示的柱状图,以100天记录的各需求量的频率作为每天各需求量发生的概率.
(1)若蛋糕店一天制作17个生日蛋糕,
①求当天的利润(单位:元)关于当天需求量(单位:个,)的函数解析式;
②在当天的利润不低于750元的条件下,求当天需求量不低于18个的概率.
(2)若蛋糕店计划一天制作16个或17个生日蛋糕,请你以蛋糕店一天利润的期望值为决定依据,判断应该制作16个是17个?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆和定点,由圆外一点向圆引切线,切点为,且满足.
(1)求实数间满足的等量关系;
(2)若以为圆心的圆与圆有公共点,试求圆的半径最小时圆的方程;
(3)当点的位置发生变化时,直线是否过定点,如果是,求出定点坐标,如果不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(A)已知平行四边形中, , , 为的中点, .
(1)求的长;
(2)设, 为线段、上的动点,且,求的最小值.
(B)已知平行四边形中, , , 为的中点, .
(1)求的长;
(2)设为线段上的动点(不包含端点),求的最小值,以及此时点的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图象关于直线对称,且图象上相邻最高点的距离为.
⑴求的解析式;
⑵将的图象向右平移个单位,得到的图象若关于的方程在上有唯一解,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆:,点.
(1)过点的直线与圆交与两点,若,求直线的方程;
(2)从圆外一点向该圆引一条切线,切点记为,为坐标原点,且满足,求使得取得最小值时点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆经过点,,且它的圆心在直线上.
(Ⅰ)求圆的方程;
(Ⅱ)求圆关于直线对称的圆的方程。
(Ⅲ)若点为圆上任意一点,且点,求线段的中点的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)已知数列和满足,若为等比数列,且,.
(1)求与;
(2)设(),记数列的前项和为,
(I)求;
(II)求正整数,使得对任意均有.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com