【题目】如图,四棱锥中,底面为矩形,侧面为正三角形,且平面 平面, 为中点, .
(Ⅰ)求证:平面平面;
(Ⅱ)若二面角的平面角大小满足,求四棱锥的体积.
【答案】(Ⅰ)证明见解析;(Ⅱ) .
【解析】试题分析:(Ⅰ)由正三角形性质可得,再利用面面垂直的性质定理得平面,从而,则 ,由线面垂直的判定定理以及面面垂直的判定定理可得平面;(Ⅱ)建立空间直角坐标系,令,求出平面的法向量以及平面的法向量,根据二面角的平面角大余弦值列方程求出,利用棱锥的体积公式可得结果.
试题解析:(Ⅰ)取中点为, 中点为,
由侧面为正三角形,且平面平面知平面,故,
又,则平面,所以,
又,则,又是中点,则,
由线面垂直的判定定理知平面,
又平面,故平面平面.
(Ⅱ)
如图所示,建立空间直角坐标系,
令,则.
由(Ⅰ)知为平面的法向量,
令为平面的法向量,
由于均与垂直,
故即解得
故,由 ,解得.
故四棱锥的体积.
【方法点晴】本题主要考查面面垂直的判定定理、利用空间向量求二面角以及棱锥的体积公式,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.
科目:高中数学 来源: 题型:
【题目】为了得到函数 的图象,只要将函数y=sin2x的图象( )
A.向右平移 个单位长度
B.向左平移 个单位长度
C.向右平移 个单位长度
D.向左平移 个单位长度
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为,半径为,矩形的一边在直径上,点、、、在圆周上,、在边上,且,设.
(1)记游泳池及其附属设施的占地面积为,求的表达式;
(2)怎样设计才能符合园林局的要求?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为,其中为常数;
(1)若,且是奇函数,求的值;
(2)若, ,函数的最小值是,求的最大值;
(3)若,在上存在个点 ,满足, ,
,使得,
求实数的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率为,以椭圆长、短轴四个端点为顶点为四边形的面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图所示,记椭圆的左、右顶点分别为、,当动点在定直线上运动时,直线分别交椭圆于两点、,求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点F1 , F2为椭圆 的左右焦点,若椭圆上存在点P使得 ,则此椭圆的离心率的取值范围是( )
A.(0, )
B.(0, ]
C.( , ]
D.[ ,1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两位同学在5次考试中的数学成绩用茎叶图表示如图,中间一列的数字表示数学成绩的十位数字,两边的数字表示数学成绩的个位数字,若甲、乙两人的平均成绩分别是 , ,则下列说法正确的是( )
A. ,甲比乙成绩稳定
B. ,乙比甲成绩稳定
C. ,甲比乙成绩稳定
D. ,乙比甲成绩稳定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆心为C的圆经过O(0,0))和A(4,0)两点,线段OA的垂直平分线和圆C交于M,N两点,且|MN|=2
(1)求圆C的方程
(2)设点P在圆C上,试问使△POA的面积等于2的点P共有几个?证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com