精英家教网 > 高中数学 > 题目详情
f(x)=loga(x2-ax+1)(a>0且a≠1)满足:对任意实数x1,x2,当x1<x2时,总有f(x1)-f(x2)<0,那么a的取值范围是( )
A.(0,2)
B.(0,1)
C.(0,1)∪(1,2)
D.(1,2)
【答案】分析:f(x1)-f(x2)<0转化为f(x1)<f(x2),再利用复合函数的单调性:知道 a<1且真数恒大于0,求得a的取值范围.
解答:解:∵y=x2-ax+1=(x-2+1-在对称轴左边递减,
∴当x1<x2时,y1<y2
∵对任意的x1、x2,当x1<x2时,f(x1)-f(x2)<0⇒f(x1)<f(x2
故应有 a<1  ①
又因为y=x2-ax+1在真数位置上所以须有1->0⇒-2<a<2     ②
综上得0<a<1
故选B.
点评:本题考查了复合函数的单调性.复合函数的单调性的遵循原则是单调性相同复合函数为增函数,单调性相反复合函数为减函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=loga(x+1)(a>1),若函数y=g(x)的图象与函数y=f(x)的图象关于原点对称.
(1)写出函数g(x)的解析式;
(2)求不等式2f(x)+g(x)≥0的解集A;
(3)问是否存在m∈R*,使不等式f(x)+2g(x)≥logam的解集恰好是A?若存在,请求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

14、函数f(x)=loga(1-x)+5,其中a>0且a≠1,图象过定点
(0,5)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区一模)设f(x)是定义在R上的函数,对x∈R都有f(-x)=f(x),f(x)•f(x+2)=10,且当x∈[-2,0]时,f(x)=(
1
2
)x-1
,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(x+1),g(x)=-loga(1-x).
(1)当0<a<1时,解不等式;2f(x)+g(x)≥0;
(2)当a>1,x∈[0,1)时,总有2f(x)+g(x)≥m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南充一模)函数f(x)=loga|x|+1(a>1)的图象大致为下图的(  )

查看答案和解析>>

同步练习册答案