【题目】已知函数f(2x﹣1)的定义域为[﹣1,4],则函数f(x)的定义域为( )
A.(﹣3,7]
B.[﹣3,7]
C.(0,]
D.[0,)
科目:高中数学 来源: 题型:
【题目】 (本小题满分12分)
如图, 在四面体ABOC中, , 且.
(Ⅰ)设为为的中点, 证明: 在上存在一点,使,并计算;
(Ⅱ)求二面角的平面角的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修44:坐标系与参数方程
在平面直角坐标系中,圆C的参数方程为,(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为,A,B两点的极坐标分别为.
(Ⅰ)求圆C的普通方程和直线的直角坐标方程;
(Ⅱ)点P是圆C上任一点,求△PAB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古代数学家刘徽在《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的立体为“牟合方盖”,如图(1)(2),刘徽未能求得牟合方盖的体积,直言“欲陋形措意,惧失正理”,不得不说“敢不阙疑,以俟能言者”.约200年后,祖冲之的儿子祖暅提出“幂势既同,则积不容异”,后世称为祖暅原理,即:两等高立体,若在每一等高处的截面积都相等,则两立体体积相等.如图(3)(4),祖暅利用八分之一正方体去掉八分之一牟合方盖后的几何体与长宽高皆为八分之一正方体的边长的倒四棱锥“等幂等积”,计算出牟合方盖的体积,据此可知,牟合方盖的体积与其外切正方体的体积之比为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1 , α∩平面ABCD=m,α∩平面AB B1A1=n,则m,n所成角的正弦值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 , 则下列关于函数y=f[f(x)]+1的零点个数的判断正确的是( )
A.当k>0时,有3个零点;当k<0时,有2个零点
B.当k>0时,有4个零点;当k<0时,有1个零点
C.无论k为何值,均有2个零点
D.无论k为何值,均有4个零点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且过点.
(1)求的方程;
(2)是否存在直线与相交于两点,且满足:①与(为坐标原点)的斜率之和为2;②直线与圆相切,若存在,求出的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设m,n是两条不同的直线,α,β是两个不重合的平面,给定下列四个命题,其中为真命题的是( ) ① ;② ;
③ ;④ .
A.①和②
B.②和③
C.③和④
D.①和④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com