精英家教网 > 高中数学 > 题目详情
15.不等式lgx2<lg2x的解集是(0,1)∪(100,+∞).

分析 利用对数的运算性质将lgx2<lg2x转化为lgx(lgx-2)>0,然后求解即可.

解答 解:∵lgx2<lg2x,
∴lgx(lgx-2)>0,
∴lgx>2或lgx<0,
∴x>100或0<x<1.
∴不等式lgx2<lg2x的解集是(0,1)∪(100,+∞).
故答案为:(0,1)∪(100,+∞).

点评 本题考查对数不等式的解法,考查转化与方程思想,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有12种.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=lnx-x-a有两个不同的零点,则实数a的取值范围是(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设$\overrightarrow{a}$+$\overrightarrow{b}$=2$\overrightarrow{i}$,$\overrightarrow{a}$-$\overrightarrow{b}$=-8$\overrightarrow{i}$+16$\overrightarrow{j}$,其中$\overrightarrow{i}$、$\overrightarrow{j}$为两个互相垂直的单位向量,则$\overrightarrow{a}$•$\overrightarrow{b}$=-79.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某班主任对全班50名学生进行了作业量多少的调查,数据如表:
认为作业多认为作业不多总数
喜欢玩电脑游戏18927
不喜欢玩电脑游戏81523
总数262450
则认为喜欢玩电脑游戏与认为作业量的多少有关系的把握大约为(  )
附:
P(K2》k00.100.050.0250.010
    k02.7063.8415.0246.635
(K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
A.99%B.95%C.90%D.无充分依据

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某校高一.2班学生每周用于数学学习的时间x(单位:h)与数学成绩y(单位:分)之间有如下数据:
x24152319161120161713
y92799789644783687159
某同学每周用于数学学习的时间为18小时,试预测该生数学成绩.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为了解某市民众对政府出台楼市限购令的情况,在该市随机抽取了50名市民进行调查,他们月收人(单位:百元)的频数分布及对楼市限购令赞成的人数如下表:
月收入[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数510151055
赞成人数4812521
将月收入不低于55的人称为“高收人族”,月收入低于55的人称为“非高收入族”.
(Ⅰ)根据已知条件完成下面的2x2列联表,问赞成楼市限购令与收入高低是否有关?
非高收入族高收入族总计
赞成
不赞成
总计
(Ⅱ)现从月收入在[15,25)的人中随机抽取两人,所抽取的两人都赞成楼市限购令的概率.
附:${x^2}=\frac{{n{{({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}^2}}}{{{n_{1+}}{n_{2+}}{n_{+1}}{n_{+2}}}},\frac{{p({x^2}≥k)}}{k}\frac{0.050.01}{3.8416.635}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线l的参数方程:$\left\{\begin{array}{l}{x=t}\\{y=1+2t}\end{array}\right.$(t为参数)和曲线C的极坐标方程:ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$).
(1)证明:判定曲线C的形状,并证明直线l和C相交;
(2)设直线l与C交于A、B两点,P(0,1),求$\overrightarrow{PA}$•$\overrightarrow{PB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列写法正确的是(  )
A.751(9)B.751(7)C.095(12)D.901(2)

查看答案和解析>>

同步练习册答案