精英家教网 > 高中数学 > 题目详情

【题目】为了研究“晚上喝绿茶与失眠”有无关系,调查了100名人士,得到下面的列联表:

失眠

不失眠

合计

晚上喝绿茶

16

40

56

晚上不喝绿茶

5

39

44

合计

21

79

100

由已知数据可以求得:,则根据下面临界值表:

0.050

0.010

0.001

3.841

6.635

10.828

可以做出的结论是( )

A. 在犯错误的概率不超过0.01的前提下认为“晚上喝绿茶与失眠有关”

B. 在犯错误的概率不超过0.01的前提下认为“晚上喝绿茶与失眠无关”

C. 在犯错误的概率不超过0.05的前提下认为“晚上喝绿茶与失眠有关”

D. 在犯错误的概率不超过0.05的前提下认为“晚上喝绿茶与失眠无关”

【答案】C

【解析】分析:根据题意给定的的值,与临界值表的数据比较,即可得到答案.

详解:由题意,知

根据临界值表:可得

所以可得在犯错误的概率不超过的前提下认为“晚上喝绿茶与失眠有关”,故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的图象如图所示:

给出下列四个命题:

(1)方程有且仅有6个根;

(2)方程有且仅有3个根;

(3)方程有且仅有5个根;

(4)方程有且仅有4个根.

其中正确命题的个数是( )

A. 4个B. 3个C. 2个D. 1个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,C是半圆O上除A、B外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=EB,AB=4,tan∠EAB=
证明:平面ADE⊥平面ACD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下列向量组中,可以把向量=(3,2)表示出来的是(   )

A. =(0,0),=(1,2)B. =(-1,2),=(5,-2)

C. =(3,5),=(6,10)D. =(2,-3),=(-2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , a1=1,且nan+1=2Sn(n∈N*),数列{bn}满足b1= , b2= , 对任意n∈N* , 都有bn+12=bnbn+2
求数列{an}、{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】洛萨·科拉茨是德国数学家,他在1937年提出了一个著名的猜想:任给一个正整数,如果是偶数,就将它减半(即);如果是奇数,则将它乘3加1(即),不断重复这样的运算,经过有限步后,一定可以得到1,如初始正整数为6,按照上述变换规则,我们得到一个数列:6,3,10,5,16,8,4,2,1.对科拉茨猜想,目前谁也不能证明,更不能否定,如果对正整数按照上述规则实施变换(注:1可以多次出现)后的第九项为1,则的所有可能取值的集合为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥P﹣ABCD的底面为平行四边形,PD⊥平面ABCD,M为PC中点.

(1)求证:AP∥平面MBD;

(2)若AD⊥PB,求证:BD⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数.

(1)求的值;

(2)证明:是区间上的减函数;

(3)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱BCF﹣ADE的侧面CFED与ABFE都是边长为1的正方形,M、N两点分别在AF和CE上,且AM=EN.
(1)求证:平面ABCD⊥平面ADE;
(2)求证:MN∥平面BCF;
(3)若点N为EC的中点,点P为EF上的动点,试求PA+PN的最小值.

查看答案和解析>>

同步练习册答案