【题目】如图,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1 , y1),B(x2 , y2)均在抛物线上.
(1)写出该抛物线的方程及其准线方程;
(2)当PA与PB的斜率存在且倾斜角互补时,求y1+y2的值及直线AB的斜率.
【答案】
(1)解:由已知条件,可设抛物线的方程为y2=2px
∵点P(1,2)在抛物线上∴22=2p×1,得p=2
故所求抛物线的方程是y2=4x
准线方程是x=﹣1
(2)解:设直线PA的斜率为kPA,直线PB的斜率为kPB
则 ,
∵PA与PB的斜率存在且倾斜角互补
∴kPA=﹣kPB
由A(x1,y1),B(x2,y2)在抛物线上,得y12=4x1(1)y22=4x2(2)
∴
∴y1+2=﹣(y2+2)
∴y1+y2=﹣4
由(1)﹣(2)得直线AB的斜率
【解析】(1)设出抛物线的方程,把点P代入抛物线求得p则抛物线的方程可得,进而求得抛物线的准线方程.(2)设直线PA的斜率为kPA , 直线PB的斜率为kPB , 则可分别表示kPA和kPB , 根据倾斜角互补可知kPA=﹣kPB , 进而求得y1+y2的值,把A,B代入抛物线方程两式相减后即可求得直线AB的斜率.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.
(1)现已画出函数f(x)在y轴左侧的图象,如图所示,请补出完整函数f(x)的图象,并根据图象写出函数f(x)的增区间;
(2)写出函数f(x)的解析式和值域;
(3)若方程f(x)﹣m=0有四个解,求m的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1 , F2是椭圆 (a>b>0)的两个焦点,O为坐标原点,点P(﹣1, )在椭圆上,且 =0,⊙O是以F1F2为直径的圆,直线l:y=kx+m与⊙O相切,并且与椭圆交于不同的两点A,B
(1)求椭圆的标准方程;
(2)当 =λ,且满足 ≤λ≤ 时,求弦长|AB|的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】请阅读下列材料:若两个正实数a1 , a2满足a12+a22=1,那么a1+a2 .证明:构造函数f(x)=(x﹣a1)2+(x﹣a2)2=2x2﹣2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以△≤0,从而得4(a1+a2)2﹣8≤0,所以a1+a2 .根据上述证明方法,若n个正实数满足a12+a22+…+an2=1时,你能得到的结论为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥侧面A1ABB1 , 且AA1=AB=2
(1)求证:AB⊥BC;
(2)若AC=2 ,求锐二面角A﹣A1C﹣B的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0)的离心率为 ,左、右焦点分别为F1 , F2 , 点G在椭圆C上,且 =0,△GF1F2的面积为2.
(1)求椭圆C的方程;
(2)直线l:y=k(x﹣1)(k<0)与椭圆Γ相交于A,B两点.点P(3,0),记直线PA,PB的斜率分别为k1 , k2 , 当 最大时,求直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com