精英家教网 > 高中数学 > 题目详情
15.在△ABC中,|$\overrightarrow{BC}$|=4,△ABC的内切圆切BC于D点,且|$\overrightarrow{BD}$|-|$\overrightarrow{CD}$|=2$\sqrt{2}$,则顶点A的轨迹方程为$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{2}$=1(x>$\sqrt{2}$).

分析 由题意画出图形,由图可知∴|AB|-|AC|=|BE|-|CF|=|$\overrightarrow{BD}$|-|$\overrightarrow{CD}$|=2$\sqrt{2}$,即点A的轨迹为以B,C为焦点的双曲线的右支(y≠0),顶点A的轨迹方程可求.

解答 解:如图,
设E、F分别为圆与AB、AC的两个切点,
则|BE|=|BD|,|CD|=|CF|,
又|AE|=|AF|,
∴|AB|-|AC|=|BE|-|CF|=|$\overrightarrow{BD}$|-|$\overrightarrow{CD}$|=2$\sqrt{2}$,
∴点A的轨迹为以B,C为焦点的双曲线的右支(y≠0),
且a=$\sqrt{2}$,c=2,
∴b=$\sqrt{{2}^{2}{-(\sqrt{2})}^{2}}$=$\sqrt{2}$,
∴轨迹方程为$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{2}$=1(x>$\sqrt{2}$).
故答案为:$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{2}$=1(x>$\sqrt{2}$).

点评 本题考查了双曲线的定义与平面几何知识在求解圆锥曲线问题中的应用问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.用坐标法证明:平行四边形对角线的平方和等于四条边的平方和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.小晶用圆、三角形、正方形按一定规律画图,前八个图形如图所示,则猜测第2017个图形中共含有的正方形个数为(  )
A.670B.672C.335D.336

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若a=3,b=4,C=60°.
(1)求c的值;
(2)求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知tan(α+β)=2,tan(α-β)=3,则$\frac{sin2α}{cos2β}$的值为$\frac{5}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图是某算法的程序框图,若程序运行后输出的结果是14,则判断框内填入的条件可以是(  )
A.S≥10?B.S≥14?C.n>4?D.n>5?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若a,b∈R,i为虚数单位,且(a+i)i=b+$\frac{5}{2-i}$,则a+b=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C的焦点是${F_1}(-2\sqrt{2},0),{F_2}(2\sqrt{2},0)$,其上的动点P满足$|{P{F_1}}|+|{P{F_2}}|=4\sqrt{3}$.点O为坐标原点,椭圆C的下顶点为R.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设过点(0,1)且斜率为k的直线l2交椭圆C于M,N两点,试探究:无论k取何值时,$\overrightarrow{RM}•\overrightarrow{RN}$是否恒为定值.是求出定值,不是说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y≥0,}&{\;}\\{x-y≤0,}&{\;}\\{x-2y+2≥0,}&{\;}\end{array}\right.$则(x+3)2+(y-$\frac{1}{2}$)2的最小值为4.

查看答案和解析>>

同步练习册答案