精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面的中点,上的点.

1)若平面,证明:平面.

2)求二面角的余弦值.

【答案】1)证明见解析(2

【解析】

1)因为,利用线面平行的判定定理可证出平面,利用点线面的位置关系,得出,由于底面,利用线面垂直的性质,得出

,且,最后结合线面垂直的判定定理得出平面,即可证出平面.

2)由(1)可知两两垂直,建立空间直角坐标系,标出点坐标,运用空间向量坐标运算求出所需向量,分别求出平面和平面的法向量,最后利用空间二面角公式,即可求出的余弦值.

1)证明:因为平面平面

所以平面

因为平面平面,所以可设平面平面

又因为平面,所以.

因为平面平面

所以,从而得.

因为底面,所以.

因为,所以.

因为,所以平面.

综上,平面.

2)解:由(1)可得两两垂直,以为原点,所在

直线分别为轴,建立如图所示的空间直角坐标系.

因为,所以

所以.

是平面的法向量,

,得.

是平面的法向量,

,得

所以

的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为为抛物线上一点.

(1)求过点的切线方程(用表示);

(2)过直线上一点作抛物线的两条切线,切点为,求为抛物线的顶点)面积之和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将4名大学生随机安排到A,B,C,D四个公司实习.

(1)求4名大学生恰好在四个不同公司的概率;

(2)随机变量X表示分到B公司的学生的人数,求X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第七届世界军人运动会于20191018日至27日在中国武汉举行,中国队以1336442铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第七届世界军人运动会于20191018日至27日在中国武汉举行,中国队以1336442铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为,右焦点为,斜率为1的直线与椭圆交于两点,且,其中为坐标原点.

1)求椭圆的标准方程;

2)设过点且与直线平行的直线与椭圆交于两点,若点满足,且与椭圆的另一个交点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如下表:

从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:

(1)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品”的规定?

(2)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;

(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值近似满足,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列对任意都有(其中是常数) .

(Ⅰ)当时,求

(Ⅱ)当时,若,求数列的通项公式;

(Ⅲ)若数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.时,设是数列的前项和,,试问:是否存在这样的“封闭数列”,使得对任意,都有,且.若存在,求数列的首项的所有取值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体BACDE中,ABACAB4AC3DC⊥平面ABCEA⊥平面ABC,点M在线段BC上,且AM.

1)证明:AM⊥平面BCD

2)若点F为线段BE的中点,且三棱锥FBCD的体积为1,求CD的长度.

查看答案和解析>>

同步练习册答案