精英家教网 > 高中数学 > 题目详情

已知二次函数f(x)=ax2+bx+c,(a,b,cR)满足:对任意实数x,都有f(x)≥x,且当x(1,3)时,有f(x)≤(x+2)2成立.

(1)证明:f(2)=2.

(2)若f(-2)=0,f(x)的表达式.

(3)设g(x)=f(x)-x x(0,∞),若g(x)图上的点都位于直线y=的上方,求实数m的取值范围.

答案:
解析:

  解:(1)由条件知恒成立

  又∵取x=2时,与恒成立

  ∴    4分

  (2)∵    2分

  又恒成立,即恒成立

  ∴,    2分

  解出:

  ∴    2分

  (3)由分析条件知道,只要f(x)图象(在y轴右侧)总在直线上方即可,也就是直线的斜率小于直线与抛物线相切时的斜率位置,于是:

  利用相切时△=0,解出    4分

  ∴    2分

  解法2:必须恒成立

  即恒成立

  ①△<0,即[4(1-m)]2-8<0,解得:    2分

  ②解出:    2分

  总之,m(-∞,1+)


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+
1
2
满足f(1+x)=f(1-x)且方程f(x)=
5
2
-x
有等根
(1)求f(x)的表达式;
(2)若f(x)在定义域(-1,t]上的值域为(-1,1],求t的取值范围;
(3)是否存在实数m、n(m<n),使f(x)定义域和值域分别为[m,n]和[2m,2n],若存在,求出m、n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c,函数y=f(x)+
2
3
x-1
的图象过原点且关于y轴对称,记函数 h(x)=
x
f(x)

(I)求b,c的值;
(Ⅱ)当a=
1
10
时,求函数y=h(x)
的单调递减区间;
(Ⅲ)试讨论函数 y=h(x)的图象上垂直于y轴的切线的存在情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+1和g(x)=
bx-1a2x+2b

(1)f(x)为偶函数,试判断g(x)的奇偶性;
(2)若方程g(x)=x有两个不相等的实根,当a>0时判断f(x)在(-1,1)上的单调性;
(3)若方程g(x)=x的两实根为x1,x2f(x)=0的两根为x3,x4,求使x3<x1<x2<x4成立的a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=
-x2-x+2
的定义域为A,若对任意的x∈A,不等式x2-4x+k≥0成立,则实数k的最小值为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+1和g(x)=
bx-1a2x+2b

(1)f(x)为偶函数,试判断g(x)的奇偶性;
(2)若方程g(x)=x有两个不相等的实根,当a>0时判断f(x)在(-1,1)上的单调性;
(3)当b=2a时,问是否存在x的值,使满足-1≤a≤1且a≠0的任意实数a,不等式f(x)<4恒成立?并说明理由.

查看答案和解析>>

同步练习册答案