精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2asinωxcosωx+b(2cos2ωx-1)(ω>0)在x=
π
12
时取最大值2.x1,x2是集合M={x∈R|f(x)=0}中的任意两个元素,|x1-x2|的最小值为
π
2

(I)求a、b的值;
(II)若f(α)=
2
3
,求sin(
6
-4α)
的值.
分析:(I)利用二倍角公式化简函数为f(x)=Asin(2ωx+?),根据在x=
π
12
时取最大值2.x1,x2是集合M={x∈R|f(x)=0}中的任意两个元素,|x1-x2|的最小值为
π
2
.求出A,T,解得ω,利用f(
π
12
)=2
,求出?,然后求出a、b的值;
(II)通过(I)以及f(α)=
2
3
,求出sin(2α+
π
3
)=
1
3
,利用诱导公式化简sin(
6
-4α)
,通过二倍角公式求出sin(
6
-4α)
的值.
解答:解:(I)f(x)=asin2ωx+bcos2ωx,
可设f(x)=Asin(2ωx+?),其中A=
a2+b2
,sin?=
b
a2+b2
,cos?=
a
a2+b2

由题意知:f(x)的周期为π,A=2,由
=π,知ω=1.
∴f(x)=2sin(2x+?)(3分)
f(
π
12
)=2
,∴sin(
π
6
+?)=1
,从而
π
6
+?=
π
2
+2kπ,k∈Z

?=
π
3
+2kπ(k∈Z)
,∴f(x)=2sin(2x+
π
3
)=sin2x+
3
cos2x

从而a=1,b=
3
(6分)

(II)由f(α)=
2
3
2sin(2α+
π
3
)=
2
3
,即sin(2α+
π
3
)=
1
3

sin(
6
-4α)=sin[
2
-(4α+
3
)]=-cos(4α+
3
)

=-1+2sin2(2α+
π
3
)=-1+2×(
1
3
)2=-
7
9
.(12分)
点评:本题是中档题,考查三角函数的化简、求值,函数的基本性质:最值、周期,二倍角公式,两角和的正弦函数,诱导公式的应用,是综合题,考查计算能力,仔细分析题目的含义,是解好数学题目的基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案