精英家教网 > 高中数学 > 题目详情

【题目】如图所示的几何体中,正方形所在平面垂直于平面,四边形为平行四边形,G上一点,且平面.

(1)求证:平面平面

(2)当三棱锥体积最大时,求平面与平面所成二面角的正弦值.

【答案】(1)证明见解析

(2)

【解析】

(1)利用面面垂直的性质定理可以得到线面垂直,然后得到线线垂直,再由已知的线面垂直得到线线垂直,利用线面垂直的判断定理得到线面垂直,最后利用面面垂直的判定定理证明出面面垂直;

(2)通过三棱锥的体积公式,由等积法可以得到:求三棱锥体积的最大值,只需求的最大值.设出两个线段的长,建立空间直角坐标系,利用空间向量的数量积公式可以求出平面与平面所成二面角的余弦值,最后利用同角的三角函数关系式中的平方和关系求出平面与平面所成二面角的正弦值.

(1)证明:因为平面平面,平面平面

四边形正方形,即平面

所以平面

又因为平面,所以

因为平面平面

所以

因为平面

所以平面

因为平面

所以平面平面

(2)解:

求三棱锥体积的最大值,只需求的最大值.

由(1)知,

所以,当且仅当

时,

中点为坐标原点建立空间直角坐标系如图,则

为平面的一个法向量,

可取,则

因为四边形为平行四边形,为等腰直角三角形,

所以四边形为正方形,取平面的一个法向量为

所以,所以

即平面与平面所成二面角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】公平正义是社会主义和谐社会的重要特征,是社会主义法治理念的价值追求.“考试作为一种公平公正选拔人才的有效途径,正被广泛采用.每次考试过后,考生最关心的问题是:自己的考试名次是多少?自已能否被录取?能获得什么样的职位?

某单位准备通过考试(按照高分优先录取的原则)录用名,其中个高薪职位和个普薪职位.实际报名人数为名,考试满分为. 考试后对部分考生考试成绩进行抽样分析,得到频率分布直方图如下:

试结合此频率分布直方图估计:

(1)此次考试的中位数是多少分(保留为整数)?

(2)若考生甲的成绩为280分,能否被录取?若能被录取,能否获得高薪职位?(分数精确到个位,概率精确到千分位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果对一切正实数,不等式恒成立,则实数的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,为棱的中点,动点在平面及其边界上运动,总有,则动点的轨迹为(

A.两个点B.线段C.圆的一部分D.抛物线的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业年的纯利润为万元,因设备老化等原因,企业的生产能力将逐年下降,若不进行技术改造,预测从今年(年)起每年比上一年纯利润减少万元,今年初该企业一次性投入资金万元进行技术改造,预计在未扣除技术改造资金的情况下,第年(今年为第一年)的利润为万元(为正整数).

1)设从今年起的前年,若该企业不进行技术改造的累计纯利润为万元,进行技术改造后的累计纯利润为万元(须扣除技术改造资金),求的表达式;

2)以上述预测,从今年起该企业至少经过多少年后,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,并在两种坐标系中取相同的长度单位已知直线l的参数方程为(为参数,),抛物线C的普通方程为.

(1)求抛物线C的准线的极坐标方程;

(2)设直线l与抛物线C相交于AB两点,求的最小值及此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,已知,顶点P在平面ABC上的射影为的外接圆圆心.

1)证明:平面平面ABC

2)若点M在棱PA上,,且二面角P-BC-M的余弦值为,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省新课改后某校为预测2020届高三毕业班的本科上线情况,从该校上一届高三(1)班到高三(5)班随机抽取50人,得到各班抽取的人数和其中本科上线人数,并将抽取数据制成下面的条形统计图.

1)根据条形统计图,估计本届高三学生本科上线率.

2)已知该省甲市2020届高考考生人数为4万,假设以(1)中的本科上线率作为甲市每个考生本科上线的概率.

i)若从甲市随机抽取10名高三学生,求恰有8名学生达到本科线的概率(结果精确到0.01);

ii)已知该省乙市2020届高考考生人数为3.6万,假设该市每个考生本科上线率均为,若2020届高考本科上线人数乙市的均值不低于甲市,求p的取值范围.

可能用到的参考数据:取.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)已知函数时总有成立,求的取值范围.

查看答案和解析>>

同步练习册答案