精英家教网 > 高中数学 > 题目详情
5.已知正项数列{an}满足a1=1,(n+2)an+12-(n+1)an2+anan+1=0,则an=$\frac{2}{n+1}$.

分析 把数列递推式变形,可得(n+2)•$(\frac{{a}_{n+1}}{{a}_{n}})^{2}+\frac{{a}_{n+1}}{{a}_{n}}=n+1$,即$\frac{{a}_{n+1}}{{a}_{n}}=\frac{n+1}{n+2}$.然后利用累积法得答案.

解答 解:由(n+2)an+12-(n+1)an2+anan+1=0,得
(n+2)•$(\frac{{a}_{n+1}}{{a}_{n}})^{2}+\frac{{a}_{n+1}}{{a}_{n}}=n+1$,即
$\frac{{a}_{n+1}}{{a}_{n}}=\frac{n+1}{n+2}$.
∴${a}_{n}=\frac{{a}_{n}}{{a}_{n-1}}•\frac{{a}_{n-1}}{{a}_{n-2}}•…•\frac{{a}_{2}}{{a}_{1}}•{a}_{1}$
=$\frac{n}{n+1}•\frac{n-1}{n}•…•\frac{2}{3}•1=\frac{2}{n+1}$.
故答案为:$\frac{2}{n+1}$.

点评 本题考查数列递推式,考查了累积法求数列的通项公式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.下列四个命题:
①若0>a>b,则$\frac{1}{a}<\frac{1}{b}$;②x>0,$x+\frac{1}{x-1}$的最小值为3;
③椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$比椭圆$\frac{x^2}{4}+\frac{y^2}{2}=1$更接近于圆;
④设A,B为平面内两个定点,若有|PA|+|PB|=2,则动点P的轨迹是椭圆;
其中真命题的序号为①③.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.三棱锥P-ABC三条侧棱两两垂直,三条侧棱长分别为1,$\sqrt{5}$,$\sqrt{10}$,则该三棱锥的外接球体积为(  )
A.$\frac{32}{3}$πB.$\frac{16}{3}$πC.32πD.16π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数f(x)同时满足以下三个性质:①f(x)的最小正周期为π;②对任意的x∈R,都有f(x-$\frac{π}{4}$)+f(-x)=0;③f(x)在($\frac{π}{4}$,$\frac{π}{2}$)上是减函数,则f(x)的解析式可能是(  )
A.f(x)=sin2x+cos2xB.f(x)=sin2xC.f(x)=tan(x+$\frac{π}{8}$)D.f(x)=cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若数列{an}的通项公式为an=(-1)n(3n-2),则a1+a2+…+a8=12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知sin(α+β)=$\frac{33}{65}$,cosβ=-$\frac{5}{13}$,且0<α<$\frac{π}{2}$,$\frac{π}{2}$<β<π,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数y=$\frac{1}{\sqrt{a{x}^{2}-ax+1}}$的定义域R,则实数a的取值范围是[0,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在空间四边形ABCD中,E是线段AB的中点.
(1)若CF=2FD,连接EF,CE,AF,BF化简下列各式,并在图中标出化简得到的向量:
①$\overrightarrow{AC}$+$\overrightarrow{CB}$+$\overrightarrow{BD}$;
②$\overrightarrow{AF}$-$\overrightarrow{BF}$-$\overrightarrow{AC}$;
③$\frac{1}{2}$$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\frac{2}{3}$$\overrightarrow{CD}$;
(2)若F为CD的中点,求证:$\overrightarrow{EF}$=$\frac{1}{2}$($\overrightarrow{AD}$+$\overrightarrow{BC}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知O是平面内任意一点,α是任意角,下列等式一定可以判定A,B,C三点共线的是(  )
A.$\overrightarrow{OC}$=sinα$\overrightarrow{OA}$+cosα$\overrightarrow{OB}$B.$\overrightarrow{OC}$=sin2α$\overrightarrow{OA}$+cos2α$\overrightarrow{OB}$
C.$\overrightarrow{OC}$=sinα$\overrightarrow{OA}$-cosα$\overrightarrow{OB}$D.$\overline{OC}$=sin2α$\overrightarrow{OA}$-cos2α$\overrightarrow{OB}$

查看答案和解析>>

同步练习册答案