精英家教网 > 高中数学 > 题目详情
定义区间(a,b),[a,b),(a,b],[a,b]的长度均为d=b-a,多个区间并集的长度为各区间长度之和,例如,(1,2)∪[3,5)的长度d=(2-1)+(5-3)=3.用[x]表示不超过x的最大整数,记{x}=x-[x],其中x∈R.设f(x)=[x]{x},g(x)=x-1,当0≤x≤k时,不等式f(x)<g(x)解集区间的长度为5,则k的值为( )
A.6
B.7
C.8
D.9
【答案】分析:先化简f(x)=[x]•{x}=[x]•(x-[x])=[x]x-[x]2,再化简f(x)<g(x),再分类讨论:①当x∈[0,1)时,②当x∈[1,2)时③当x∈[2,3)时,从而得出f(x)<g(x)在0≤x≤k时的解集的长度,依题意即可求得k的值.
解答:解:f(x)=[x]•{x}=[x]•(x-[x])=[x]x-[x]2,g(x)=x-1,
f(x)<g(x)⇒[x]x-[x]2<x-1即([x]-1)x<[x]2-1,
当x∈[0,1)时,[x]=0,上式可化为x>1,
∴x∈∅;
当x∈[1,2)时,[x]=1,上式可化为0>0,
∴x∈∅;
当x∈[2,3)时,[x]=2,[x]-1>0,上式可化为x<[x]+1=3,
∴当x∈[0,3)时,不等式f(x)<g(x)解集区间的长度为d=3-2=1;
同理可得,当x∈[3,4)时,不等式f(x)<g(x)解集区间的长度为d=4-2=2;
∵不等式f(x)<g(x)解集区间的长度为5,
∴k-2=5,
∴k=7.
故选B.
点评:本题主要考查了抽象函数及其应用,同时考查了创新能力,以及分类讨论的思想和转化思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、定义区间(a,b),[a,b),(a,b],[a,b]的长度均为d=b-a,多个区间并集的长度为各区间长度之和,例如,(1,2)∪[3,5)的长度d=(2-1)+(5-3)=3.用[x]表示不超过x的最大整数,记{x}=x-[x],其中x∈R.设f(x)=[x]•{x},g(x)=x-1,若用d1,d2,d3分别表示不等式f(x)>g(x),方程f(x)=g(x),不等式f(x)<g(x)解集区间的长度,则当0≤x≤2011时,有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

15、已知定义域为(O,+∞)的函数f(x)满足:①对任意x∈(0,+∞),恒有f(10x)=10f(x),②当x∈(1,10]时,f(x)=x-lgx,②.记区间Ik=(10k,10k+1],其中k∈Z,当x∈Ik(k=0,1,2,3,…)时.f(x)的取值构成区间Dk,定义区间(a,b)的区间长度为b-a,设区间Dk在区间Ik上的补集的区间长度为ak,则a1=
10
,ak=
10k

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)定义区间(a,b),[a,b),(a,b],[a,b]的长度均为d=b-a.用[x]表示不超过x的最大整数,记{x}=x-[x],其中x∈R.设f(x)=[x]{x},g(x)=x-1,若用d表示不等式f(x)<g(x)解集区间的长度,则当0≤x≤3时,有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)定义区间(a,b),[a,b),(a,b],[a,b]的长度均为d=b-a,多个区间并集的长度为各区间长度之和,例如,(1,2)∪[3,5)的长度d=(2-1)+(5-3)=3.用[x]表示不超过x的最大整数,记{x}=x-[x],其中x∈R.设f(x)=[x]{x},g(x)=x-1,当0≤x≤k时,不等式f(x)<g(x)解集区间的长度为5,则k的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•内江一模)定义区间(a,b),[a,b),(a,b][a,b]的长度均为d=b-a,多个区间并集的长度为各区间长度之和,例如(1,2)∪(3,5)的长度为d=(2-1)+(5-3)=3,用[x]表示不超过x的最大整数,记<x>=x-[x],其中x∈R.设f(x)=[x]•<x>,g(x)=2x-[x]-2,若d1,d2,d3分别表示不等式f(x)>g(x)、方程f(x)=g(x)、不等式f(x)<g(x)解集的长度,则当0≤x≤2012时,有(  )

查看答案和解析>>

同步练习册答案