精英家教网 > 高中数学 > 题目详情

【题目】将直角三角形沿斜边上的高折成的二面角,已知直角边,那么下面说法正确的是_________

(1) 平面平面 (2)四面体的体积是

(3)二面角的正切值是 (4)与平面所成角的正弦值是

【答案】(3)(4)

【解析】

画出图像,由图像判断(1)是否正确;计算的体积来判断(2)是否正确;依题意建立空间直角坐标系,利用空间向量的方法判断(3),(4)是否正确.

画出图像如下图所示,由图可知(1)的判断显然错误.由于,故是二面角的平面角且平面,故.的延长线于,由于,故是三棱锥的高.在原图中,,,,,所以,故(2)错误.为坐标原点,分别为轴建立空间直角坐标系.,,设平面的法向量为,则,令,则,.平面的法向量是.设二面角的平面角为,由图可知为锐角,故,则其正切值为.故(3)判断正确.平面的法向量为,设直线和平面所成的角为,则,故(4)判断正确.综上所述,正确的有(3),(4).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在某超市,随机调查了100名顾客购物时使用手机支付的情况,得到如下的列联表,已知从其中使用手机支付的人群中随机抽取1人,抽到青年的概率为.

青年

中老年

合计

使用手机支付

60

不使用手机支付

28

合计

100

1)根据已知条件完成列联表,并根据此资料判断是否有99.9%的把握认为超市购物用手机支付与年龄有关”.

2)现按照使用手机支付不使用手机支付进行分层抽样,从这100名顾客中抽取容量为5的样本,求从样本中任选3人,则3人中至少2人使用手机支付的概率.

(其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABCD为平面内的四点,且A(1,3),B(2,–2),C(4,1).

(1)若,求D点的坐标;

(2)设向量,若k+3平行,求实数 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴,离心率为,且长轴长是短轴长的倍.

(1)求椭圆的标准方程;

(2)设过椭圆左焦点的直线 两点,若对满足条件的任意直线,不等式 恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给图中ABCDEF六个区域进行染色,每个区域只染一种颜色,且相邻的区域不同色.若有4种颜色可供选择,则共有___种不同的染色方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点F与抛物线焦点重合,且椭圆的离心率为,过轴正半轴一点 且斜率为的直线交椭圆于两点.

(1)求椭圆的标准方程;

(2)是否存在实数使以线段为直径的圆经过点,若存在,求出实数的值;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次购物抽奖活动中,假设某10张券中有一等奖券2张,每张可获价值50元的奖品;有二等奖券2张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:

1)该顾客中奖的概率;

2)该顾客获得的奖品总价值X元的概率分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

①纯虚数z的共轭复数是

②若,则

③若,则互为共轭复数;

④若,则互为共轭复数.

其中正确命题的序号是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,给出下列四个结论:

① 函数的最小正周期是

② 函数在区间上是减函数;

③ 函数的图像关于点对称;

④ 函数的图像可由函数的图像向右平移个单位,再向下平移1个单位得到.其中正确结论的个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案