精英家教网 > 高中数学 > 题目详情

【题目】选修4—4:坐标系与参数方程

P是曲线C1:(x-2)2+y2=4上的动点,以坐标原点O为极点,x轴的正半轴为极轴

建立极坐标系,将点P绕极点O逆时针90得到点Q,设点Q的轨迹为曲线C2.

求曲线C1,C2的极坐标方程;

射线= (>0)与曲线C1,C2分别交于A,B两点,定点M(2,0),MAB的面积

【答案】(Ⅰ) 的极坐标方程为 的极坐标方程为;(Ⅱ)

【解析】试题分析:(I)曲线 把互化公式代入可得曲线 的极坐标方程,设代入即可得出曲线 的极坐标方程;(II) 到射线 的距离为

即可得出面积.

试题解析:(Ⅰ)曲线的极坐标方程为

,则,则有

所以曲线的极坐标方程为

(Ⅱ)到射线的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中的数所成的数列,它包含的不以1结尾的任何排列,即对于的四个数的任意一个不以1结尾的排列,都有,使得,并且,求这种数列的项数的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①函数的单调增区间是

②若函数定义域为且满足,则它的图象关于轴对称;

③函数的值域为

④函数的图象和直线的公共点个数是,则的值可能是

⑤若函数上有零点,则实数的取值范围是.

其中正确的序号是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCDABCD的棱长为a,连接ACADABBDBCCD,得到一个三棱锥.求:

(1)三棱锥ABCD的表面积与正方体表面积的比值;

(2)三棱锥ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有关于的一元二次方程

)若是从四个数中任取的一个数,是从三个数中任取的一个数,求上述方程有实根的概率.

)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x2+1gx)=4x+1,的定义域都是集合A,函数fx)和gx)的值域分别为ST

1)若A[12],求ST

2)若A[0m]ST,求实数m的值

3)若对于集合A的任意一个数x的值都有fx)=gx),求集合A

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)写出函数的最小正周期;

2)请在下面给定的坐标系上用五点法画出函数在区间的简图;

3)指出该函数的图象可由的图象经过怎样的平移和伸缩变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线的两支为(如图),正三角形PQR的三顶点位于此双曲线上。

(1)求证:P、Q、R不能都在双曲线的同一支上;

(2)P(-1,-1)上,Q、R上。求顶点Q、R的坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

已知曲线的参数方程为为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(Ⅰ)求曲线的直角坐标方程及曲线上的动点到坐标原点的距离的最大值;

(Ⅱ)若曲线与曲线相交于两点,且与轴相交于点,求的值.

查看答案和解析>>

同步练习册答案