精英家教网 > 高中数学 > 题目详情
16.如图,四棱锥P-ABCD中,底面ABCD是矩形,面PAD⊥底面ABCD,且△PAD是边长为2的等边三角形,PC=$\sqrt{13}$,M在PC上,且PA∥面MBD.
(1)求证:M是PC的中点;
(2)在PA上是否存在点F,使二面角F-BD-M为直角?若存在,求出$\frac{AF}{AP}$的值;若不存在,说明理由.

分析 (1)连AC交BD于E,连ME,推导出E是AC中点,PA∥ME,由此能证明M是PC的中点.
(2)取AD中点O,以O为原点,OA,OE,OP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,利用向量法求出存在F,使二面角F-BD-M为直角,此时$\frac{AF}{AP}=\frac{3}{8}$.

解答 证明:(1)连AC交BD于E,连ME.
∵ABCD是矩形,∴E是AC中点.
又PA∥面MBD,且ME是面PAC与面MDB的交线,
∴PA∥ME,∴M是PC的中点.
解:(2)取AD中点O,由(1)知OA,OE,OP两两垂直.
以O为原点,OA,OE,OP所在直线分别为x轴,y轴,z轴建立空间直角坐标系(如图),
则各点坐标为$A({1,0,0}),B({1,3,0}),D({-1,0,0}),C({-1,3,0}),P({0,0,\sqrt{3}}),M({-\frac{1}{2},\frac{3}{2},\frac{{\sqrt{3}}}{2}})$.
设存在F满足要求,且$\frac{AF}{AP}=λ$,
则由$\overrightarrow{AF}=λ\overrightarrow{AP}$得:$F({1-λ,0,\sqrt{3}λ})$,
面MBD的一个法向量为$\overrightarrow n=({1,-\frac{2}{3},\frac{{\sqrt{3}}}{3}})$,
面FBD的一个法向量为$\overrightarrow m=({1,-\frac{2}{3},\frac{λ-2}{{\sqrt{3}λ}}})$,
由$\overrightarrow n•\overrightarrow m=0$,得$1+\frac{4}{9}+\frac{λ-2}{3λ}=0$,解得$λ=\frac{3}{8}$,
故存在F,使二面角F-BD-M为直角,此时$\frac{AF}{AP}=\frac{3}{8}$.

点评 本题考查点是线段的中点的证明,考查满足条件的点的位置的确定与线段比值的求法,考查推理论证能力、运算求解能力、空间思维能力,考查数形结合思想、转化化归思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.计算椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1所围成的平面图形的面积A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:
父亲身高x/cm174176176176178
儿子身高y/cm175176177178179
则y对x的线性回归方程为(  )
A.$\widehat{y}$=x-1B.$\widehat{y}$=x+1C.$\widehat{y}$=88+$\frac{1}{2}$xD.$\widehat{y}$=176

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知点P(0,-2),椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,F是椭圆E的右焦点,直线PF的斜率为2,O为坐标原点.
(1)求椭圆E的方程;
(2)直线l被圆O:x2+y2=3截得的弦长为3,且与椭圆E交于A、B两点,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知m>1,x,y满足约束条件$\left\{\begin{array}{l}x-y+4≥0\\ mx-y+5-m≤0\\ 0≤x≤1\end{array}$,若目标函数z=ax+by(a>0,b>0)的最大值为3,则$\frac{1}{a}$+$\frac{2}{b}$(  )
A.有最小值 $\frac{{11+2\sqrt{10}}}{3}$B.有最大值$\frac{{11+2\sqrt{10}}}{3}$
C.有最小值$\frac{{11-2\sqrt{10}}}{3}$D.有最大值$\frac{{11-2\sqrt{10}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={-2,-1,0,1,2},∁RB={x|(x-1)(x+2)≥0},则A∩B=(  )
A.{-1,0,1}B.{-1,0}C.{-2,-1,0}D.{-2,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.对正整数n,设曲线y=(2-x)xn在x=3处的切线与y轴交点的纵坐标为an,则数列$\left\{{\frac{a_n}{n+2}}\right\}$的前n项和等于$\frac{{{3^{n+1}}-3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.据报道,巴基斯坦由中方投资运营的瓜达尔港目前已通航.这是一个可以停靠8~10万吨油轮的深水港,通过这一港口,中国船只能够更快到达中东和波斯湾地区,这相当于给中国平添了一条大动脉!在打造中巴经济走廊协议(简称协议)中,能源投资约340亿美元,公路投资约59亿美元,铁路投资约38亿美元,高架铁路投资约16亿美元,瓜达尔港投资约6.6亿美元,光纤通讯投资约为0.4亿美元.有消息称,瓜达尔港的月货物吞吐量将是目前天津、上海两港口月货物吞吐量之和.表格记录了2015年天津、上海两港口的月吞吐量(单位:百万吨):
1月2月3月4月5月6月7月8月9月10月11月12月
天津242226232426272528242526
上海322733313031323330323030

(Ⅰ)根据协议提供信息,用数据说明本次协议投资重点;
(Ⅱ)从表中12个月任选一个月,求该月天津、上海两港口月吞吐量之和超过55百万吨的概率;
(Ⅲ)将(Ⅱ)中的计算结果视为瓜达尔港每个月货物吞吐量超过55百万吨的概率,设X为瓜达尔未来12个月的月货物吞吐量超过55百万吨的个数,写出X的数学期望(不需要计算过程).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(x)是定义在R上的奇函数,当x>0时,f(x)=2x-3,则不等式f(x)<-5的解为(-∞,-3).

查看答案和解析>>

同步练习册答案