精英家教网 > 高中数学 > 题目详情
15.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,E为AD上一点,四边形BCDE为矩形,∠PAD=60°,PA=ED=2AE=2.
(I)若$\overrightarrow{PF}=λ\overrightarrow{PC}$(λ∈R),且PA∥平面BEF,求λ的值;
(Ⅱ)求证:CB⊥平面PEB.

分析 (I)连接AC交BE于点M,连接FM,由已知得FM∥AP,由EM∥CD,FM∥AP,能求出λ.
(II)先求出$PE=\sqrt{3}$,从而PE⊥AD,进而PE⊥CB,BE⊥CB,由此能证明CB⊥平面PEB.

解答 解:(I)连接AC交BE于点M,连接FM,
因为PA∥平面BEF,平面PAC∩平面BEF=FM,所以FM∥AP.
因为EM∥CD,所以$\frac{AM}{MC}=\frac{AE}{ED}=\frac{1}{2}$
因为FM∥AP,所以$\frac{PF}{FC}=\frac{AM}{MC}=\frac{1}{2}$
所以$λ=\frac{1}{3}$.…(6分)
证明:(II)因为AP=2,AE=1,∠PAD=60°,
所以$PE=\sqrt{3}$,所以PE⊥AD
又平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,PE⊥平面ABCD,
所以PE⊥CB,又BE⊥CB,且PE∩BE=E.
所以CB⊥平面PEB.…(13分)

点评 本题考查实数值的求法,考查线面垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知am=-2,则a2m的值为(  )
A.-4B.4C.(-2)mD.2m

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知a,b为正实数,且a+b=2,则$\frac{{a}^{2}+2}{a}$+$\frac{{b}^{2}}{b+1}$-2的最小值为$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知实数c>0,c≠1,设有两个命题:命题p:函数y=cx是R上的单调减函数;命题q:对于?x∈R,不等式x2+x+$\frac{c}{2}$>0恒成立.若命题p∨q为真,p∧q为假,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$.
(1)写出曲线C的普通方程和直线l的直角坐标方程;
(2)设点P为曲线C上的动点,求点P到直线l距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=($\frac{1}{2}$)x-log2x的零点为x0,则(  )
A.x0<1B.x0>3C.2<x0<3D.1<x0<2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知抛物线y2=2x上两点A,B到焦点的距离之和为7,则线段AB中点的横坐标为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=cosxsin(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$.
(1)求f(x)的单调增区间;
(2)求f(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.等比数列{an}中,a3a5=64,则a4=(  )
A.8B.-8C.8或-8D.16

查看答案和解析>>

同步练习册答案