精英家教网 > 高中数学 > 题目详情
函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下命题:
①f(x)在[1,3]上的图象是连续不断的;
②f(x2)在[1,]上具有性质P;
③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];
④对任意x1,x2,x3,x4∈[1,3],有[f(x1)+f(x2)+f(x3)+f(x4)]
其中真命题的序号是( )
A.①②
B.①③
C.②④
D.③④
【答案】分析:根据题设条件,分别举出反例,说明①和②都是错误的;同时证明③和④是正确的.
解答:解:在①中,反例:f(x)=在[1,3]上满足性质P,
但f(x)在[1,3]上不是连续函数,故①不成立;
在②中,反例:f(x)=-x在[1,3]上满足性质P,但f(x2)=-x2在[1,]上不满足性质P,
故②不成立;
在③中:在[1,3]上,f(2)=f()≤

故f(x)=1,
∴对任意的x1,x2∈[1,3],f(x)=1,
故③成立;
在④中,对任意x1,x2,x3,x4∈[1,3],
=


=[f(x1)+f(x2)+f(x3)+f(x4)],

[f(x1)+f(x2)+f(x3)+f(x4)],
故④成立.
故选D.
点评:本题考查的知识点为函数定义的理解,说明一个结论错误时,只需举出反例即可.说明一个结论正确时,要证明对所有的情况都成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)的图象与直线x=a,x=b及x轴所围成图形的面积称为函数f(x)在[a,b]上的面积.已知函数y=sinnx在[0,
π
n
]
上的面积为
2
n
(n∈N*)
,则函数y=cos3x在[0,
6
]
上的面积为
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为[a,b]的函数y=f(x)图象的两个端点为A、B,M(x,y)是f(x)图象上任意一点,其中x=λa+(1-λ)b∈[a,b],已知向量
ON
OA
+(1-λ)
OB
,若不等式|
MN
|≤k
恒成立,则称函数f(x)在[a,b]上“k阶线性近似”.若函数y=x-
1
x
在[1,2]上“k阶线性近似”,则实数k的取值范围为
k≥
3
2
-
2
k≥
3
2
-
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-3ax+1,g(x)=log4(x2+2x+3)
(1)求函数g(x)的值域;
(2)求函数f(x)在[a,+∞)上的最小值;
(3)若对于任意的x1∈[a,+∞),都存在x2∈R,使得f(x1)≥g(x2)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区一模)定义域为[a,b]的函数y=f(x)图象的两个端点为A,B,向量
ON
=λ 
OA
+(1-λ) 
OB
,M(x,y)是f(x)图象上任意一点,其中x=λ
a
+(1-λ)
b
,λ∈[0,1].若不等式|MN|≤k恒成立,则称函数f(x)在[a,b]上满足“k范围线性近似”,其中最小的正实数k称为该函数的线性近似阀值.下列定义在[1,2]上函数中,线性近似阀值最小的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)在[a,b]上是偶函数,则a+b=
 

查看答案和解析>>

同步练习册答案