精英家教网 > 高中数学 > 题目详情

【题目】平行六面体中,以顶点为端点的三条棱长都为1,且两两夹角为.

(1)求的长;

(2)求异面直线夹角的余弦值.

【答案】1AC1的长为;(2ACBD1夹角的余弦值为

【解析】

试题(1)记abc,并将其作为一组基底,利用空间向量的基本定理表示出,然后利用向量的模长计算公式及数量积的运算律即可求解;(2)利用向量夹角求两条异面直线夹角,但注意向量夹角为锐角或直角时两者相等,当向量夹角为钝角时,两者互补。

试题解析:(1)记abc

|a||b||c|1,〈ab〉=〈bc〉=〈ca〉=60°

∴a·bb·cc·a

||2=(abc2a2b2c22a·bb·cc·a)=1116

∴||,即AC1的长为

2bcaab∴||||

·=(bca·ab)=b2a2a·cb·c1

∴cos〉=

∴ACBD1夹角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线C的焦点为F,抛物线C与直线l1的一个交点为,且为坐标原点).

(Ⅰ)求抛物线C的方程;

(II)不过原点的直线l2l1垂直,且与抛物线交于不同的两点AB,若线段AB的中点为P,且|OP|=|PB|,求△FAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】网约车的兴起丰富了民众出行的选择,为民众出行提供便利的同时也解决了很多劳动力的就业问题,据某著名网约车公司“滴滴打车”官网显示,截止目前,该公司已经累计解决退伍军人转业为兼职或专职司机三百多万人次,梁某即为此类网约车司机,据梁某自己统计某一天出车一次的总路程数可能的取值是20、22、24、26、28、,它们出现的概率依次是、t、

(1)求这一天中梁某一次行驶路程X的分布列,并求X的均值和方差;

(2)网约车计费细则如下:起步价为5元,行驶路程不超过时,租车费为5元,若行驶路程超过,则按每超出(不足也按计程)收费3元计费.依据以上条件,计算梁某一天中出车一次收入的均值和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数上的最小值的表达式;

2)若函数上有且只有一个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求曲线在点处的切线方程;

(2)若在区间上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力,某移动支付公司在我市随机抽取了100名移动支付用户进行调查,得到如下数据:

每周移动支付次数

1次

2次

3次

4次

5次

6次及以上

4

3

3

7

8

30

6

5

4

4

6

20

合计

10

8

7

11

14

50

(1)在每周使用移动支付超过3次的样本中,按性别用分层抽样的方法随机抽取5名用户.

①求抽取的5名用户中男、女用户各多少人;

②从这5名用户中随机抽取2名用户,求抽取的2名用户中既有男用户又有女用户的概率.

(2)如果认为每周使用移动支付次数超过3次的用户“喜欢使用移动支付”,能否在犯错误概率不超过的前提下,认为“喜欢使用移动支付”与性别有关?

附表及公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在海岸处,发现北偏东方向,距离海里的处有一艘走私船,在处北偏西方向,距离海里的处有一艘缉私艇奉命以海里/时的速度追截走私船,此时,走私船正以海里/时的速度从处向北偏东方向逃窜.

(1)问船与船相距多少海里?船在船的什么方向?

(2)问缉私艇沿什么方向行驶才能最快追上走私船?并求出所需时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形, 均为等边三角形,且平面平面的中点.

(1)求证: 平面

(2)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求的定义域;

2)试判断函数在区间上的单调性,并给出证明;

3)若在区间上恒取正值,求实数的取值范围.

查看答案和解析>>

同步练习册答案