精英家教网 > 高中数学 > 题目详情

【题目】如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球面对接而成,该封闭几何体内部放入一个小圆柱体,且圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )

A. B. C. D.

【答案】B

【解析】

小圆柱的底面半径为r (0r5),小圆柱的高分为2部分,上半部分在大圆柱内为5,下半部分深入半球内为h (0h5),由于下半部分截面和球的半径构成直角三角形,即+,从而可以找出体积表达式进而利用函数知识求出最值。

小圆柱的高分为上下两部分,上部分同大圆柱一样为5,下部分深入底部半球内设为h (0h5),小圆柱的底面半径设为r (0r5),由于和球的半径构成直角三角形,即+所以小圆柱体积,(0h5),求导0h时,体积单调递增,当h5体积单调减所以当h=小圆柱体积取得最大值,,故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】圆周上有1994个点将它们染成若干种不同的颜色且每种颜色的点数各不相同.今在每种颜色的点集中各取一个点组成顶点颜色各不相同的圆内接多边形为了要使这样的多边形个数最多应将1994个点染成多少种不同的颜色且每种颜色的点集各含有多少个点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年某地遭遇严重干旱,某乡计划向上级申请支援,为上报需水量,乡长事先抽样调查100户村民的月均用水量,得到这100户村民月均用水量(单位:t)的频率分布表如下:

月均用水量分组

频数

频率

12

40

0.18

6

合计

100

1.00

1)请完成该频率分布表,并画出相对应的频率分布直方图.

2)样本的中位数是多少?

3)已知上级将按每户月均用水量向该乡调水,若该乡共有1200户,请估计上级支援该乡的月调水量是多少吨.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点M到定点F1-20)和F220)的距离之和为

1)求动点M轨迹C的方程;

2)设N02),过点P-1-2)作直线l,交椭圆C于不同于NAB两点,直线NANB的斜率分别为k1k2,问k1+k2是否为定值?若是的求出这个值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】统计表明,某种型号的汽车在匀速行驶中每小时耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为: ,已知甲、乙两地相距100千米.

(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?

(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=,若g(x)=f(x)-a恰好有3个零点,则a的取值范围为(  )

A. B. C. D.

【答案】D

【解析】

恰好有3个零点, 等价于的图象有三个不同的交点

作出的图象,根据数形结合可得结果.

恰好有3个零点,

等价于有三个根,

等价于的图象有三个不同的交点

作出的图象,如图,

由图可知,

时,的图象有三个交点,

即当时,恰好有3个零点,

所以的取值范围是故选D.

【点睛】

本题主要考查函数的零点与分段函数的性质,属于难题. 函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数的零点函数轴的交点方程的根函数的交点.

型】单选题
束】
13

【题目】设集合A={0,log3(a+1)},B={a,a+b}若A∩B={1},则b=______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是抛物线的焦点,若点在抛物线上,且

求抛物线的方程;

动直线与抛物线相交于两点,问:在轴上是否存在定点其中,使得向量与向量共线其中为坐标原点?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是为参数).

(Ⅰ)将曲线的极坐标方程化为直角坐标方程;

(Ⅱ)若直线与曲线相交于两点,且,求直线的倾斜角的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为三次函数,且其图象关于原点对称,当时,的极小值为-1,则

(1)函数的解析式__________

(2)函数的单调递增区间为___________

查看答案和解析>>

同步练习册答案