精英家教网 > 高中数学 > 题目详情
下列图象中有一个是函数f(x)=
1
3
x3+ax2+(a2-1)x+1(a∈R,a≠0)的导数f′(x)的图象,则f(-1)=(  )
A.
1
3
B.-
1
3
C.
7
3
D.-
1
3
5
3

∵f′(x)=x2+2ax+(a2-1),
∴导函数f′(x)的图象开口向上.
又∵a≠0,
∴f(x)不是偶函数,其图象不关于y轴对称
其图象必为第三张图.由图象特征知f′(0)=0,
且对称轴-a>0,
∴a=-1.
故f(-1)=-
1
3
-1+1=-
1
3

故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=,其中
(I)若b>2a,且 f(sinx)(x∈R)的最大值为2,最小值为-4,试求函数f(x)的最小值;
(II)若对任意实数x,不等式恒成立,且存在成立,求c的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知二次函数y=x2-2x-1的图象的顶点为A.二次函数y=ax2+bx的图象与x轴交于原点O及另一点C,它的顶点B在函数y=x2-2x-1的图象的对称轴上.
(1)求点A与点C的坐标;
(2)当四边形AOBC为菱形时,求函数y=ax2+bx的关系式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+ax+b(a、b∈R),g(x)=2x2-4x-16,
(1)求不等式g(x)<0的解集;
(2)若|f(x)|≤|g(x)|对任意x∈R恒成立,求a,b;
(3)在(2)的条件下,若对一切x>2,均有f(x)≥(m+2)x-m-15成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
2
x2-mlnx+(m-1)x
,m∈R.
(1)当m=2时,求函数f(x)的最小值;
(2)当m≤0时,讨论函数f(x)的单调性;
(3)求证:当m=-2时,对任意的x1,x2∈(0,+∞),且x1≠x2,有
f(x2)-f(x1)
x2-x1
>-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x,
(1)求f(x)的解析式;
(2)函数y=f(x+a)在区间[-1,3]上不单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2-|4|+3(x∈R),
(I)判断函数的奇偶性并将函数写成分段函数的形式;
(II)画出函数的图象并指出它的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

时,函数取得最小值. 
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数为偶函数,则的值是(   )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案