【题目】为迎接夏季旅游旺季的到来,少林寺单独设置了一个专门安排游客住宿的客栈,寺庙的工作人员发现为游客准备的一些食物有些月份剩余不少,浪费很严重,为了控制经营成本,减少浪费,就想适时调整投入.为此他们统计每个月入住的游客人数,发现每年各个月份来客栈入住的游客人数会发生周期性的变化,并且有以下规律:
①每年相同的月份,入住客栈的游客人数基本相同;
②入住客栈的游客人数在2月份最少,在8月份最多,相差约400人;
③2月份入住客栈的游客约为100人,随后逐月递增直到8月份达到最多.
(1)试用一个正弦型三角函数描述一年中入住客栈的游客人数y与月x份之间的关系;
(2)请问哪几个月份要准备400份以上的食物?
【答案】(1)f(x)=200sin(x)+300;(2)只有6,7,8,9,10五个月份要准备400份以上的食物.
【解析】
试题(1)根据①,可知函数的周期是12;根据②可知,f(2)最小,f(8)最大,且f(8)﹣f(2)=400;根据③可知,f(x)在[2,8]上单调递增,且f(2)=100,由此可得函数解析式;
(2)由条件知,200sin(x)+300≥400,结合x∈N*,1≤x≤12,即可得到结论.
解:(1)设该函数为f(x)=Asin(ωx+φ)+B(A>0,ω>0,0<|φ|<π)
根据①,可知函数的周期是12,∴=12,∴ω=;
根据②可知,f(2)最小,f(8)最大,且f(8)﹣f(2)=400,故该函数的振幅为200;
根据③可知,f(x)在[2,8]上单调递增,且f(2)=100,∴f(8)=500
∴,∴
∵f(2)最小,f(8)最大,
∴sin(2×+φ)=﹣1,sin(8×+φ)=1,
∵0<|φ|<π,
∴φ=
∴f(x)=200sin(x)+300;
(2)由条件知,200sin(x)+300≥400,化简可得sin(x),
∴2kπ+≤x≤2kπ+,k∈Z
∴12k+6≤x≤12k+10,k∈Z
∵x∈N*,1≤x≤12
∴x=6,7,8,9,10
∴只有6,7,8,9,10五个月份要准备400份以上的食物.
科目:高中数学 来源: 题型:
【题目】己知函数f(x)是定义在R上的偶函数,f(x+1)为奇函数,f(0)=0,当x∈(0,1]时,f(x)=log2x,则在区间(8,9)内满足方f(x)程f(x)+2=f( )的实数x为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司年会举行抽奖活动,每位员工均有一次抽奖机会.活动规则如下:一只盒子里装有大小相同的6个小球,其中3个白球,2个红球,1个黑球,抽奖时从中一次摸出3个小球,若所得的小球同色,则获得一等奖,奖金为300元;若所得的小球颜色互不相同,则获得二等奖,奖金为200元;若所得的小球恰有2个同色,则获得三等奖,奖金为100元.
(1)求小张在这次活动中获得的奖金数的概率分布及数学期望;
(2)若每个人获奖与否互不影响,求该公司某部门3个人中至少有2个人获二等奖的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查某中学学生在周日上网的时间,随机对名男生和名女生进行了不记名的问卷调查,得到了如下的统计结果:
表1:男、女生上网时间与频数分布表
上网时间(分钟) | [30,40) | [40,50) | [50,60) | [60,70) | [70,80] |
男生人数 | 5 | 25 | 30 | 25 | 15 |
女生人数 | 10 | 20 | 40 | 20 | 10 |
(Ⅰ)若该中学共有女生750人,试估计其中上网时间不少于60分钟的人数;
(Ⅱ)完成下表,并回答能否有90%的把握认为“学生周日上网时间与性别有关”?
上网时间少于60分钟 | 上网时间不少于60分钟 | 合计 | |
男生 | |||
女生 | |||
合计 |
附:公式,其中
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在底面为正方形的四棱锥S﹣ABCD中,SA=SB=SC=SD,异面直线AD与SC所成的角为60°,AB=2.则四棱锥S﹣ABCD的外接球的表面积为( )
A.6π
B.8π
C.12π
D.16π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD为菱形,四边形ACEF为平行四边形,设BD与AC相交于点G,AB=BD=2,AE= ,∠EAD=∠EAB.
(1)证明:平面ACEF⊥平面ABCD;
(2)若AE与平面ABCD所成角为60°,求二面角B﹣EF﹣D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2018年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:
打算观看 | 不打算观看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中数据b,c;
(2)判断是否有99%的把握认为观看2018年足球世界杯比赛与性别有关;
(3)为了计算“从10人中选出9人参加比赛”的情况有多少种,我们可以发现它与“从10人中选出1人不参加比赛”的情况有多少种是一致的.现有问题:在打算观看2018年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2|x+1|+|2x﹣a|(x∈R).
(1)当a>﹣2时,函数f(x)的最小值为4,求实数a的值;
(2)若对于任意,x∈[﹣1,4],不等式f(x)≥3x恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的右焦点F(1,0),椭圆Γ的左,右顶点分别为M,N.过点F的直线l与椭圆交于C,D两点,且△MCD的面积是△NCD的面积的3倍.
(Ⅰ)求椭圆Γ的方程;
(Ⅱ)若CD与x轴垂直,A,B是椭圆Γ上位于直线CD两侧的动点,且满足∠ACD=∠BCD,试问直线AB的斜率是否为定值,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com