精英家教网 > 高中数学 > 题目详情

【题目】为迎接夏季旅游旺季的到来,少林寺单独设置了一个专门安排游客住宿的客栈,寺庙的工作人员发现为游客准备的一些食物有些月份剩余不少,浪费很严重,为了控制经营成本,减少浪费,就想适时调整投入.为此他们统计每个月入住的游客人数,发现每年各个月份来客栈入住的游客人数会发生周期性的变化,并且有以下规律:

①每年相同的月份,入住客栈的游客人数基本相同;

②入住客栈的游客人数在2月份最少,在8月份最多,相差约400人;

③2月份入住客栈的游客约为100人,随后逐月递增直到8月份达到最多.

(1)试用一个正弦型三角函数描述一年中入住客栈的游客人数y与月x份之间的关系;

(2)请问哪几个月份要准备400份以上的食物?

【答案】1fx=200sinx+300;(2)只有678910五个月份要准备400份以上的食物.

【解析】

试题(1)根据,可知函数的周期是12;根据可知,f2)最小,f8)最大,且f8﹣f2=400;根据可知,fx)在[28]上单调递增,且f2=100,由此可得函数解析式;

2)由条件知,200sinx+300≥400,结合x∈N*1≤x≤12,即可得到结论.

解:(1)设该函数为fx=Asinωx+φ+BA0ω00|φ|π

根据,可知函数的周期是12=12∴ω=

根据可知,f2)最小,f8)最大,且f8﹣f2=400,故该函数的振幅为200

根据可知,fx)在[28]上单调递增,且f2=100∴f8=500

∵f2)最小,f8)最大,

∴sin=﹣1sin=1

∵0|φ|π

∴φ=

∴fx=200sinx+300

2)由条件知,200sinx+300≥400,化简可得sinx

∴2kπ+x≤2kπ+k∈Z

∴12k+6≤x≤12k+10k∈Z

∵x∈N*1≤x≤12

∴x=678910

只有678910五个月份要准备400份以上的食物.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】己知函数f(x)是定义在R上的偶函数,f(x+1)为奇函数,f(0)=0,当x∈(0,1]时,f(x)=log2x,则在区间(8,9)内满足方f(x)程f(x)+2=f( )的实数x为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司年会举行抽奖活动,每位员工均有一次抽奖机会.活动规则如下:一只盒子里装有大小相同的6个小球,其中3个白球,2个红球,1个黑球,抽奖时从中一次摸出3个小球,若所得的小球同色,则获得一等奖,奖金为300元;若所得的小球颜色互不相同,则获得二等奖,奖金为200元;若所得的小球恰有2个同色,则获得三等奖,奖金为100元.

(1)求小张在这次活动中获得的奖金数的概率分布及数学期望;

(2)若每个人获奖与否互不影响,求该公司某部门3个人中至少有2个人获二等奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查某中学学生在周日上网的时间,随机对名男生和名女生进行了不记名的问卷调查,得到了如下的统计结果:

表1:男、女生上网时间与频数分布表

上网时间(分钟)

[30,40)

[40,50)

[50,60)

[60,70)

[70,80]

男生人数

5

25

30

25

15

女生人数

10

20

40

20

10

(Ⅰ)若该中学共有女生750人,试估计其中上网时间不少于60分钟的人数;

(Ⅱ)完成下表,并回答能否有90%的把握认为“学生周日上网时间与性别有关”?

上网时间少于60分钟

上网时间不少于60分钟

合计

男生

女生

合计

附:公式,其中

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.83

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在底面为正方形的四棱锥S﹣ABCD中,SA=SB=SC=SD,异面直线AD与SC所成的角为60°,AB=2.则四棱锥S﹣ABCD的外接球的表面积为(
A.6π
B.8π
C.12π
D.16π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为菱形,四边形ACEF为平行四边形,设BD与AC相交于点G,AB=BD=2,AE= ,∠EAD=∠EAB.
(1)证明:平面ACEF⊥平面ABCD;
(2)若AE与平面ABCD所成角为60°,求二面角B﹣EF﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2018年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:

打算观看

不打算观看

女生

20

b

男生

c

25

1)求出表中数据bc;

2)判断是否有99%的把握认为观看2018年足球世界杯比赛与性别有关;

3)为了计算10人中选出9人参加比赛的情况有多少种,我们可以发现它与10人中选出1人不参加比赛的情况有多少种是一致的.现有问题:在打算观看2018年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.

P(K2≥k0)

0.10

0.05

0.025

0.01

0.005

K0

2.706

3.841

5.024

6.635

7.879

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2|x+1|+|2x﹣a|(x∈R).
(1)当a>﹣2时,函数f(x)的最小值为4,求实数a的值;
(2)若对于任意,x∈[﹣1,4],不等式f(x)≥3x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的右焦点F(1,0),椭圆Γ的左,右顶点分别为M,N.过点F的直线l与椭圆交于C,D两点,且△MCD的面积是△NCD的面积的3倍.
(Ⅰ)求椭圆Γ的方程;
(Ⅱ)若CD与x轴垂直,A,B是椭圆Γ上位于直线CD两侧的动点,且满足∠ACD=∠BCD,试问直线AB的斜率是否为定值,请说明理由.

查看答案和解析>>

同步练习册答案