精英家教网 > 高中数学 > 题目详情

【题目】曲线 与直线y=k(x-2)+4有两个交点,则实数k的取值范围是( )
A.
B.
C.
D.

【答案】D
【解析】由y=k(x-2)+4知直线l过定点(2,4),将 ,两边平方得x2+(y-1)2=4,则曲线是以(0,1)为圆心,2为半径,且位于直线y=1上方的半圆.

当直线l过点(-2,1)时,直线l与曲线有两个不同的交点,

此时1=-2k+4-2k,解得k= ,当直线l与曲线相切时,直线和圆有一个交点,

圆心(0,1)到直线kx-y+4-2k=0的距离 ,解得k=

要使直线l:y=kx+4-2k与曲线 有两个交点时,则直线l夹在两条直线之间,

因此


【考点精析】认真审题,首先需要了解点到直线的距离公式(点到直线的距离为:).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中,E,F分别为棱AB,BB1的中点,则直线BC1与EF所成角的余弦值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,a∈R.
(1)求f(x)的解析式;
(2)解关于x的方程f(x)=(a﹣1)4x
(3)设h(x)=2﹣xf(x), 时,对任意x1 , x2∈[﹣1,1]总有 成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 中, 底面

(Ⅰ)求证:平面 平面
(Ⅱ)试在棱 上确定一点 ,使截面 把该几何体分成的两部分 的体积比为
(Ⅲ)在(Ⅱ)的条件下,求二面角 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】点P是抛物线y2=4x上一动点,则点P到点A(0,﹣1)的距离与到直线x=﹣1的距离和的最小值是(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱 中, 底面 ,且 为等边三角形, 的中点.

(1)求证:直线 平面
(2)求证:平面 平面
(3)求三棱锥 的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=45°, ,点D是AB的中点,求:
(1)边AB的长;
(2)cosA的值和中线CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|x2<9},B={x|(x﹣2)(x+4)<0}.
(1)求集合A∩B;
(2)若不等式2x2+ax+b<0的解集为A∪B,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司有AB两个景点,位于一条小路(直道)的同侧,分别距小路 km和2 km,且AB景点间相距2 km,今欲在该小路上设一观景点,使两景点在同时进入视线时有最佳观赏和拍摄效果,则观景点应设于.

查看答案和解析>>

同步练习册答案