精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在三棱锥中,都是边长为2的等边三角形,分别是棱的中点.

(1)证明:四边形为矩形;

(2)若平面平面,求点到平面的距离.

【答案】(1)见证明;(2)

【解析】

(1)运用中位线定理,证得四边形平行四边形,再取BD的中点O,连接,运用等边三角形的性质和线面垂直的判定定理,即可得证;

(2)由题意可得平面. 点到平面的距离等于点到平面的距离.证明平面,求OM的长即可.

解:(1)如图,设的中点为,连接

分别是棱的中点.

,且

,且

∴四边形为平行四边形.

都是等边三角形,

,∴平面,故

又由上知,∴

∴四边形为矩形.

(2)如图,设,连接,过.

平面平面

平面.

∴点到平面的距离等于点到平面的距离,

∵在(1)的证明中有平面平面

,故由可得.

又∵

平面

到平面的距离为.

∵平面平面,平面平面平面

平面

,于是.

又∵都是边长为2的等边三角形,

,故

∴在中,

∴点到平面的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,PA⊥底面ABC,AC⊥BC,H为PC的中点,M为AH中点,PA=AC=2,BC=1.

(Ⅰ)求证:AH⊥平面PBC;

(Ⅱ)求PM与平面AHB成角的正弦值;

(Ⅲ)在线段PB上是否存在点N,使得MN∥平面ABC,若存在,请说明点N的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为调查高二年级学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图((1))和女生身高情况的频率分布直方图((2)).已知图(1)中身高(单位:)内的男生人数有16.

(Ⅰ)求在抽取的学生中,男女生各有多少人?

(Ⅱ)根据频率分布直方图,完成下列的列联表,并判断能有多大(百分之几)的把握认为身高与性别有关”?

总计

男生人数

女生人数

总计

:参考公式和临界值表:

,

5.024

6.635

7.879

10.828

0.025

0.010

0.005

0.001

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】19的九个数字中取三个偶数四个奇数,试问:

1)能组成多少个没有重复数字的七位数?

2)上述七位数中三个偶数排在一起的有几个?

3)在(1)中的七位数中,偶数排在一起、奇数也排在一起的有几个?

4)在(1)中任意两偶数都不相邻的七位数有几个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若在点处的切线为,求的值;

(2)求的单调区间;

(3)若,求证:在时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”(已知1丈为10尺)该锲体的三视图如图所示,则该锲体的体积为( )

A. 12000立方尺B. 11000立方尺

C. 10000立方尺D. 9000立方尺

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E的左、右焦点分别为F1F2,离心率为,点A在椭圆E上,∠F1AF260°,△F1AF2的面积为4.

(1)求椭圆E的方程;

(2)过原点O的两条互相垂直的射线与椭圆E分别交于PQ两点,证明:点O到直线PQ的距离为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某社区为了解居民参加体育锻炼情况,随机抽取18名男性居民,12名女性居民对他们参加体育锻炼的情况进行问卷调查.现按参加体育锻炼的情况将居民分成3类:甲类(不参加体育锻炼),乙类(参加体育锻炼,但平均每周参加体育锻炼的时间不超过5个小时),丙类(参加体育锻炼,且平均每周参加体育锻炼的时间超过5个小时),调查结果如下表:

(1)根据表中的统计数据,完成下面列联表,并判断是否有的把握认为参加体育锻炼与否与性别有关?

(2)从抽出的女性居民中再随机抽取2人进一步了解情况,求所抽取的2人中乙类,丙类各有1人的概率.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(Ⅰ)当时,求曲线在点处的切线方程;

(Ⅱ)求函数的单调区间;

(Ⅲ)用表示中的较大者,记函数.若函数内恰有2个零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案