精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移$\frac{π}{3}$个单位长度后,所得的图象与原图象重合,则ω的最小值为(  )
A.3B.6C.9D.12

分析 函数图象平移$\frac{π}{3}$个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,容易得到结果.

解答 解:f(x)的周期T=$\frac{2π}{ω}$,函数图象平移$\frac{π}{3}$个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,
所以$\frac{π}{3}$=k•$\frac{2π}{ω}$,k∈Z.
令k=1,可得ω=6.
故选:B.

点评 本题是基础题,考查三角函数的图象的平移,三角函数的周期定义的理解,考查技术能力,常考题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.执行如图所示的程序框图,输出的k值为(  )
A.6B.8C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知a≥2,函数F(x)=min{x3-x,a(x+1)},其中min{p,q}=$\left\{\begin{array}{l}{p,p≤q}\\{q,p>q}\end{array}\right.$.
(1)若a=2,求F(x)的单调递减区间;
(2)求函数F(x)在[-1,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=$\frac{1}{\sqrt{1-x}}$的定义域为(  )
A.(0,1]B.(-∞,1)C.(-∞,1]D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.计算($\frac{125}{27}$)${\;}^{-\frac{1}{3}}$+lg$\frac{1}{4}$-lg25=-$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=ln({1+x})-x,g(x)=\frac{{{x^2}+2x+a}}{x+2}({a∈R})$.
(1)求函数f(x)的单调区间及最值;
(2)若对?x>0,f(x)+g(x)>1恒成立,求a的取值范围;
(3)求证:$\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+…+\frac{1}{2n+1}<ln({n+1})({n∈{N^*}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A、B、C所对的边分别为a、b、c,B=60°,b=$\sqrt{13}$.
(1)若3sinC=4sinA,求c的值;
(2)求a+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.与双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$有共同的渐近线,且过点$(-\sqrt{3},2\sqrt{3})$的双曲线的标准方程是$\frac{{y}^{2}}{5}-\frac{{x}^{2}}{\frac{15}{4}}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设动点P到定点F(0,$\frac{1}{4}$)的距离与它到直线y=-$\frac{1}{4}$的距离相等,
(1)求动点P的轨迹C的方程;
(2)过(-2,0)的直线l与轨迹C交于M,N两点,又过M,N作轨迹C的切线l1,l2,当l1⊥l2时,求直线l的方程.

查看答案和解析>>

同步练习册答案