【题目】如图所示,在直角梯形中,分别是的中点,将三角形沿折起,下列说法正确的是__________(填上所有正确的序号).
①不论折至何位置(不在平面内)都有平面;
②不论折至何位置都有;
③不论折至何位置(不在平面内)都有.
【答案】①②
【解析】
由已知,在未折叠的原梯形中,AB∥DE,BE∥AD.所以四边形ABED为平行四边形,∴DA=EB.折叠后得出图形如下:
①过M,N分别作AE,BC的平行线,交ED,EC于F,H.连接FH
则,,
∵AM=BN,∴EN=DM,等量代换后得出HN=FM,
又CB∥EA,∴HN∥FM,
∴四边形MNHF是平行四边形。
∴MN∥FH
MN面CED,HF面CED.∴MN∥平面DEC.①正确
②由已知,AE⊥ED,AE⊥EC,
∴AE⊥面CED,HF面CED∴AE⊥HF,∴MN⊥AE;②正确
③MN与AB异面。假若MN∥AB,则MN与AB确定平面MNAB,
从而BE平面MNAB,AD平面MNAB.与BE和AD是异面直线矛盾。③错误。
故答案为:①②。
科目:高中数学 来源: 题型:
【题目】一个生产公司投资A生产线500万元,每万元可创造利润万元,该公司通过引进先进技术,在生产线A投资减少了x万元,且每万元的利润提高了;若将少用的x万元全部投入B生产线,每万元创造的利润为万元,其中.
若技术改进后A生产线的利润不低于原来A生产线的利润,求x的取值范围;
若生产线B的利润始终不高于技术改进后生产线A的利润,求a的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】实验杯足球赛采用七人制淘汰赛规则,某场比赛中一班与二班在常规时间内战平,直接进入点球决胜环节,在点球决胜环节中,双方首先轮流罚点球三轮,罚中更多点球的球队获胜;若双方在三轮罚球中未分胜负,则需要进行一对一的点球决胜,即双方各派处一名队员罚点球,直至分出胜负;在前三轮罚球中,若某一时刻胜负已分,尚未出场的队员无需出场罚球(例如一班在先罚球的情况下,一班前两轮均命中,二班前两轮未能命中,则一班、二班的第三位同学无需出场).由于一班同学平时踢球热情较高,每位队员罚点球的命中率都能达到0.8,而二班队员的点球命中串只有0.5,比赛时通过抽签决定一班在每一轮都先罚球.
(1)定义事件为“一班第三位同学没能出场罚球”,求事件发生的概率;
(2)若两队在前三轮点球结束后打平,则进入一对一点球决胜,一对一球决胜由没有在之前点球大战中出场过的队员主罚点球,若在一对一点球决胜的某一轮中,某对队员射入点球且另一队员未能射入,则比赛结束;若两名队员均射入或者均射失点球,则进行下一轮比赛. 若直至双方场上每名队员都已经出场罚球,则比赛亦结束,双方通过抽签决定胜负,本场比赛中若已知双方在点球大战,以随机变量记录双方进行一对一点球决胜的轮数,求的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年8月8日是我国第十个全民健身日,其主题是:新时代全民健身动起来.某市为了解全民健身情况,随机从某小区居民中抽取了40人,将他们的年龄分成7段:,,,,,,后得到年龄如图所示的频率分布直方图.
(1)试求这40人年龄的众数、中位数的估计值;
(2)(i)若从样本中年龄在的居民中任取2人赠送健身卡,求这2人中至少有1人年龄低于60岁的概率;
(ii)己知该小区年龄在内的总人数为1200,若18岁以上(含18岁)为成年人,试估计该小区年龄不超过80岁的成年人人数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线经过点,倾斜角为.以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)写出直线的参数方程和曲线的直角坐标方程;
(2)设直线与曲线相交于,两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了解学生对食堂用餐的满意度,从全校在食堂用餐的3000名学生中,随机抽取100名学生对食堂用餐的满意度进行评分.根据学生对食堂用餐满意度的评分,得到如图所示的率分布直方图,
(1)求频率分布直方图中的值
(2)规定:学生对食堂用餐满意度的评分不低于80分为“满意”,试估计该校在食堂用餐的3000名学生中“满意”的人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com