精英家教网 > 高中数学 > 题目详情

【题目】如图所示的几何体是由棱台和棱锥拼接而成的组合体,其底面四边形是边长为2的菱形,平面.

(1)求证:

(2)求平面与平面所成锐角二面角的余弦值.

【答案】(1)证明见解析;(2).

【解析】试题分析:(1)根据菱形性质得,根据线面垂直得,再根据线面垂直判定定理得平面,即得.最后根据得结论,(2)先根据条件建立空间直角坐标系,设立各点坐标,根据方程组解得法向量,根据向量数量积求夹角,最后根据二面角与向量夹角关系确定所成锐角二面角的余弦值.

试题解析:(1)证明:因为底面四边形是菱形,

又∵平面

, ∴平面

.

又棱台中,

(2)建立空间直角坐标系如图所示, 则

所以

设平面的一个法向量为,则,

.

,得, ∴

设平面的法向量为,则,

,得, ∴

设平面与平面所成锐二面角为

所以平面与平面所成锐二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某兴趣小组测量电视塔AE的高度H(单位m),如示意图,垂直放置的标杆BC高度h=4m,仰角∠ABE=α∠ADE=β

1)该小组已经测得一组αβ的值,tanα=1.24,tanβ=1.20,,请据此算出H的值

2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d(单位m),使αβ之差较大,可以提高测量精确度,若电视塔实际高度为125m,问d为多少时,α-β最大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的离心率是,一个顶点是

)求椭圆的方程;

)设是椭圆上异于点的任意两点,且.试问:直线是否恒过一定点?若是,求出该定点的坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为

(Ⅰ)求的解析式;

(Ⅱ)当,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:

喜欢游泳

不喜欢游泳

合计

男生

10

女生

20

合计

已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为

(1)请将上述列联表补充完整;

(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;

(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率.

下面的临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列各式中xy的值:

1)若,则______________

2)若,则___________

3)若,则____________

4)若,则_____________

5)若,则________________

6)若,则_______________________

7)若,则_______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧面底面分別为棱的中点

(1)求三棱柱的体积;

(2)在直线上是否存在一点,使得平面?若存在,求出的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在党中央的正确指导下,通过全国人民的齐心协力,特别是全体一线医护人员的奋力救治,二月份新冠肺炎疫情得到了控制.下图是国家卫健委给出的全国疫情通报,甲、乙两个省份从27日到213日一周的新增新冠肺炎确诊人数的折线图如下:

根据图中甲、乙两省的数字特征进行比对,通过比较把你得到最重要的两个结论写在答案纸指定的空白处.

_________________________________________________.

_________________________________________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2018·长沙二模)在平面几何中有如下结论:正三角形ABC的内切圆面积为S1外接圆面积为S2,则.推广到空间可以得到类似结论:已知正四面体PABC的内切球体积为V1,外接球体积为V2,则________.

查看答案和解析>>

同步练习册答案