精英家教网 > 高中数学 > 题目详情

(本题满分14分)已知函数(常数.
(Ⅰ) 当时,求曲线在点处的切线方程;
(Ⅱ)讨论函数在区间上零点的个数(为自然对数的底数).

解:(Ⅰ)当时,.         …1分
.             又,                         
∴曲线在点处的切线方程为.即.…3分
(Ⅱ)(1)下面先证明:
设 ,则
且仅当,所以,上是增函数,故
所以,,即.   …………………………5分
(2)因为,所以.
因为当时,,当时,.
,所以上是减函数,在
上是增函数.所以,    …9分
(3)下面讨论函数的零点情况.
①当,即时,函数上无零点; 
②)当,即时,,则
上有一个零点;  
③当,即时, ,
由于

所以,函数上有两个零点.    ……………………………………13分
综上所述,上,我们有结论:当时,函数无零点;当时,函数有一个零点;当时,函数有两个零点.           ………………………………14分
解法二:(Ⅱ)依题意,可知函数的定义域为
 .      ………5分
∴当时,,当时,<

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题15分)已知函数是奇函数,且图像在点 为自然对数的底数)处的切线斜率为3.
(1)  求实数的值;
(2)  若,且对任意恒成立,求的最大值;
(3)  当时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)给定函数
(1)试求函数的单调减区间;
(2)已知各项均为负的数列满足,求证:
(3)设为数列的前项和,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(理数)(14分) 已知函数
(Ⅰ)设函数F(x)=18f(x)- [h(x)],求F(x)的单调区间与极值;
(Ⅱ)设,解关于x的方程
(Ⅲ)设,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上是增函数,在上是减函数,且方程有三个根,它们分别是
(1)求的值;    (2)求证:        (3)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂生产某种产品,已知该产品的月生产量(吨)与每吨产品的价格p(元/吨)之间的关系式为:p=24200-0.2x2,且生产x吨的成本为(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(注:利润=收入─成本)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知.
(1)求函数的单调区间;
(2)若对任意恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知,函数.
(1)当时讨论函数的单调性;
(2)当取何值时,取最小值,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f (x)=ax-ln(-x),x∈(-e,0),g(x)=-,其中e是自然常数,a∈R.
(1)讨论a=-1时, f (x)的单调性、极值;
(2)求证:在(1)的条件下,|f (x)|>g(x)+1/2;
(3)是否存在实数a,使f (x)的最小值是3,如果存在,求出a的值;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案