精英家教网 > 高中数学 > 题目详情
设函数f(x)对任意实数x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0,
(1)判断f(x)的奇偶性; 
(2)判断f(x)的单调性;
(3)解不等式
1
2
f(bx2)-f(x)>
1
2
f(b2x)-f(b)
,(b2≠2).
分析:(1)利用定义:令x=y=0,可求得f(0),令y=-x,可得f(x)与f(-x)的关系,由奇偶性的定义即可作出判断;
(2)任取x1,x2,且x1<x2,由x>0时,f(x)<0可判断f(x2-x1)的符号,从而可得f(x2)与f(x1)的大小关系,由单调性定义即可作出判断;
(3)利用函数的奇偶性、单调性可把不等式转化为具体二次不等式,由b2≠2分类讨论即可解得;
解答:解:(1)令x=y=0,由f(x+y)=f(x)+f(y),得f(0)=f(0)+f(0),
所以f(0)=0,
令y=-x,则f(0)=f(x)+f(-x),即f(x)+f(-x)=0,
所以f(-x)=-f(x),
故f(x)为奇函数;
(2)任取x1,x2,且x1<x2
则f(x2-x1)=f[x2+(-x1)]=f(x2)+f(-x1)=f(x2)-f(x1),
由x>0时,f(x)<0,且x2-x1>0,
所以f(x2-x1)<0,即f(x2)-f(x1)<0,
所以f(x2)<f(x1),
故f(x)为减函数;
(3)不等式
1
2
f(bx2)-f(x)>
1
2
f(b2x)-f(b)
可变为
1
2
f(bx2)-
1
2
f(b2x)>f(x)-f(b)=f(x-b),
⇒f(bx2-b2x)>f(2x-2b),
由(2)知f(x)单调递减,
所以bx2-b2x<2x-2b,即bx2-(b2+2)x+2b<0,
当b=0时,原不等式解集(0,+∞);
b<-
2
时,原不等式解集{x/x>
2
b
或x<b}

-
2
<b<0
时,原不等式解集{x/x<
2
b
或x>b}

0<b<
2
时,原不等式解集{x/b<x<
2
b
}

b>
2
时,原不等式解集{x/
2
b
<x<b}
点评:本题考查抽象函数的奇偶性、单调性的判断,考查抽象不等式的求解,考查分类讨论思想,考查学生解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(1)=-2
(1)证明f(x)为奇函数.
(2)证明f(x)在R上是减函数.
(3)若f(2x+5)+f(6-7x)>4,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)对任意实数x,y,都有f(x+y)=f(x)+f(y),若x>0时,f(x)<0,且f(1)=2,
①求f(x)在[-3,3]上的最大值和最小值.
②解不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)对任意x∈R,都有f(x+3)=-
1
f(x)
,且当x∈(-3,-2)时,f(x)=5x,则f(201.2)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),当x≠0时,xf(x)<0,f(1)=-2
(1)求证:f(x)是奇函数;
(2)试问:在-n≤x≤n时(n∈N*),f(x)是否有最大值?如果有,求出最大值,如果没有,说明理由.
(3)解关于x的不等式
1
2
f(bx2)-f(x)≥
1
2
f(b2x)-f(b),(b>0)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)对任意实数x,y都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0,f(1)=-2.
(1)求证f(x)是奇函数;
(2)求f(x)在[-3,3]上的最大值和最小值.

查看答案和解析>>

同步练习册答案